
VisualAge: Building GUIs for
Existing Applications

Document Number GG24-4244-00

July 1994

International Technical Support Organization
San Jose Center

Take Note!

Before using this information and the products it supports, be sure to read the general information under
“Special Notices” on page xvii.

First Edition (July 1994)

This edition applies to VisualAge for OS/2, Version 1.0, program number 5621-387, and VisualAge Team for OS/2,
Version 1.0, program number 5621-388.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 471 Building 070B
5600 Cottle Road
San Jose, California 95193-0001

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes the process of building a graphical user interface (GUI)
for an existing host application. The document shows how a developer can use
a GUI front end to provide new application functions on the workstation and
access to workstation tools.

A simple application with one input and one output map is used to explain the
principles of host and workstation control for VisualAge EHLLAPI applications.
Different implementation approaches for GUI front-end applications are
investigated, evaluated, and documented. Conclusions and recommendations
are provided.

This document is written for application developers assigned the task of writing
GUI front ends for existing host applications using VisualAge′s EHLLAPI support.
Some VisualAge knowledge is assumed.

AD LS (244 pages)

 Copyright IBM Corp. 1994 iii

iv Building GUIs

Contents

Abstract . i i i

Special Notices . xvii

Preface . xix
How This Document is Organized . xix
Related Publications . xx
International Technical Support Organization Publications xxi
Acknowledgments . xxi

Part 1. VisualAge EHLLAPI Concepts . 1

Chapter 1. Client/Server Models . 3
1.1 Distributed Presentation . 4
1.2 Remote Presentation . 4
1.3 Distributed Function . 4
1.4 Remote Data Management . 5
1.5 Distributed Data Management . 5

Chapter 2. EHLLAPI . 7
2.1 VisualAge′s EHLLAPI Support . 7

2.1.1 Understanding VisualAge EHLLAPI Parts 8
2.1.2 Abt3270Screen Actions and Events . 10
2.1.3 Abt3270Terminal Actions and Events 13

2.2 Why Use EHLLAPI? . 14
2.3 Advantages and Disadvantages of Using EHLLAPI 14

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example . . 17
3.1 Sample Application . 17
3.2 Possible GUI Implementations . 18
3.3 Implementing a GUI with Host Control . 21

3.3.1 Abt3270Screen Part Only . 21
3.3.2 Abt3270Screen Part and Abt3270Terminal Parts 32

3.4 Implementing a GUI with PWS Control . 44
3.4.1 Entering Host Commands with the Abt3270Terminal Part 44
3.4.2 Abt3270Terminal Parts Only and No Scripts 47
3.4.3 Abt3270Terminal Part and Scripts . 56

3.5 Isolating the Communication Services . 69
3.5.1 Coding the Application . 70

3.6 Analyzing the Size of Each Implementation 77

Part 2. Implementing the Sample Application . 79

Chapter 4. Design and Implementation Considerations 81
4.1 Naming Conventions . 81

4.1.1 Naming Convention for Applications . 81
4.1.2 Naming Convention for Parts . 81
4.1.3 Naming Convention for Category Parts 82

4.2 Design Models to Map Host Screens to GUI 83
4.2.1 Design Model 1 . 84

 Copyright IBM Corp. 1994 v

4.2.2 Design Model 2 . 84
4.2.3 Design Model 3 . 85
4.2.4 Design Model 4 . 85

4.3 Design of Model-View Separation . 85

Chapter 5. Sample GUI Application Design Overview 89
5.1 Project Objectives . 89
5.2 Design and Implementation Steps . 90

5.2.1 Step 1: Develop an All-in-One Prototype for the View 90
5.2.2 Step 2: Design the Object Model from the Existing Application 91
5.2.3 Step 3: Extract the Parts and Implement Them Separately 92
5.2.4 Step 4: Test Each Part Separately . 92
5.2.5 Step 5: Assemble and Test the Whole Application 92

5.3 Design Decisions . 92
5.4 Model-View Separation . 93
5.5 Restrictions of the Design . 94

Chapter 6. Designing the GUI . 97
6.1 Understanding the Host Application . 97

6.1.1 Sequence of Host 3270 Screens . 97
6.2 Sequence of GUI Windows . 100

6.2.1 What Are the Advantages of the GUI Interface? 101
6.3 Prototyping the GUI Windows . 102

Chapter 7. Running the Sample Application 105
7.1 Host Applications Window . 105
7.2 Logon to the CSP Sample Application . 105
7.3 Customer Application (Main) Window . 106
7.4 Customer List Selection . 107
7.5 Customer List Window . 108
7.6 Find in Customer List . 108
7.7 Refresh Customer List . 109
7.8 Multiple Instances of Customer List Window 110
7.9 Customer Detail Window (Address Page) 111
7.10 Writing a Letter for the Customer . 112
7.11 Customer Detail Window (Contacts Page) 112
7.12 Multiple Customer Detail Windows . 113
7.13 Add Customer Window . 113

Chapter 8. Implementation Walkthr ough . 115
8.1 3270 Applications Window . 118
8.2 3270 Logon to Host Window . 121
8.3 3270 Session Selection Form . 124
8.4 UserID Password Form . 127
8.5 OkCancelHelp Form . 129
8.6 CSP Sample Logon Window . 132
8.7 Processing Window . 137
8.8 3270 Communication SideInfo . 139
8.9 Sample Communication SideInfo . 143
8.10 DB2 Sample Logon Window . 146
8.11 CSP Sample Main Window . 146
8.12 Sample Customer List Selection Window 151
8.13 Sample Customer List . 155
8.14 String Messagebox . 164
8.15 Customer List Window . 166

vi Building GUIs

8.16 Customer . 174
8.17 Customer Window . 185
8.18 Customer Notebook Form . 192
8.19 Existing Customer Notebook Form . 197
8.20 Customer Number Form . 202
8.21 Information Line Form . 204
8.22 New Customer Window . 206
8.23 New Customer Notebook Form . 210

Appendix A. Screen Field Monitor Tool . 213
A.1 Problem Description . 213
A.2 Tool Implementation . 217

Appendix B. Changing Host Sessions Dynamically without Using Scripts . 225

Appendix C. Jumping to the 3270 Screen . 229
C.1.1 Adding the Parts to the Free Form Surface 230
C.1.2 Creating the jumpSession: Method 230
C.1.3 Creating the Event-to-Script Connection 231
C.1.4 Assigning Session IDs . 231
C.1.5 Identifying the Host Screen . 233
C.1.6 Creating the Event-to-Script Connection for the Abt3270Screen Part 233
C.1.7 Adding the foundVa10a Event to the Public Interface 234
C.1.8 Adding the GUI Application to the Free Form Surface 235
C.1.9 Connecting the Parts . 235
C.1.10 Testing the Application . 236

List of Abbreviations . 239

Index . 241

Contents vii

viii Building GUIs

Figures

 1. Client/Server Models . 3
 2. System Structure for VisualAge EHLLAPI Support 8
 3. VisualAge EHLLAPI Support . 9
 4. screenChanged Events and Settle Time 12
 5. Script That Writes to the Transcript Window 12
 6. Event-to-Script Connection . 13
 7. Transcript Window after Several screenChanged Events 13
 8. Application Integration through EHLLAPI Application 15
 9. Host Application Map 1 . 17
10. Host Application Map 2 . 17
11. Host Application Input Map . 17
12. Host Application Output Map . 18
13. Host Application Input Map with an Invalid ID 18
14. Host Control Implementations . 20
15. PWS Control Implementations . 20
16. Sequence of Events and Actions Using the Abt3270Screen Part 21
17. Debugger Window When Session Not Available 22
18. 3270 Screen Settings: Abt3270Screen Part Only 23
19. Tear-Off Attributes . 24
20. Create the Input Field . 24
21. 3270 Screen Output Fields . 25
22. Input and Output Fields for Map1 Using the Screen Field Monitor 26
23. Connecting Map1 Output Field . 26
24. Connections for First GUI Window . 27
25. Input and Output Fields for Map2 Using the Screen Field Monitor 28
26. Output Fields for Map2 . 28
27. Connections for Second GUI Window . 29
28. All Connections: Abt3270Screen Part Only 30
29. User Enters a Valid ID . 30
30. Second Window is Displayed . 31
31. User Enters Invalid ID . 31
32. Sequence of Events and Actions When Using Abt3270Terminal Parts

and an Abt3270Screen Part . 33
33. 3270 Screen Settings: Abt3270Screen and Abt3270 Terminal Parts . . . 35
34. Adding the Abt3270Terminal Parts . 35
35. Connecting the Abt3270Screen Part and the Abt3270Terminal Part . . . 36
36. Connecting the Execute Button . 37
37. Connections for Second GUI Window . 37
38. Creating a New Method . 38
39. Action Selection for Method Creation . 39
40. Method: readMessage . 39
41. Method: readName . 40
42. Event-to-Script Connections for One Terminal 40
43. Event-to-Script Connections for Both Terminals 41
44. Connecting the Result of the readMessage Script 41
45. Connecting the Result of the readName and readMessage Methods . . 42
46. Message When Connecting shortSessionIds 42
47. Connecting shortSessionId of 3270 Screen to 3270 Terminal 43
48. All Connections: Abt3270 Screen and Abt3270 Terminal Parts 43
49. Method: enterCommand: . 45
50. VisualAge Error Message . 45

 Copyright IBM Corp. 1994 ix

51. Method: enterCommandLine: . 46
52. Method: enter: andWaitForCursorPositionToChangeFrom: 46
53. Sequence of Events and Actions with PWS Control 47
54. Editing the Abt3270Terminal Part . 49
55. Abt3270Terminal Part Script Editor . 49
56. Adding an Action to the Public Interface 50
57. Adding a Point Part . 51
58. Initializing a Point with Values . 52
59. Connecting aString and aPoint . 52
60. Connecting findString . 53
61. Connecting the 3270 Terminal to Itself . 53
62. All Connections for the First Abt3270Terminal Part 54
63. All Connections for Both Abt3270 Terminal Parts 55
64. Sequence of Events and Actions with PWS Control and Scripts 56
65. Abt3270Terminal Part and Variable Parts 57
66. Creating the enterID: Method . 58
67. Using Script Editor to Generate Code . 59
68. Code Generated by the Script Editor: Attribute 59
69. Using Script Editor to Generate Action Code 60
70. Code Generated by the Script Editor: Action 60
71. Code Generated by the Script Editor: Action findString: 61
72. Generating ifTrue Statement . 61
73. Generated ifTrue Statement . 62
74. Modified ifTrue Statement . 62
75. Using the Script Editor to Generate Code: Assigning a Value to Variable 63
76. Using the Script Editor to Generate Code: Pasting Action 63
77. Using the Script Editor to Generate Code: Pasting Set message1 64
78. Generated ifTrue Block . 64
79. Generated Smalltalk Method . 65
80. Making the Visual Connections . 66
81. All Connections for this Approach . 67
82. Smalltalk Methods: Generated and Optimized 68
83. Isolating the Communication Services . 69
84. Composition Editor with Abt3270Terminal Part 71
85. Generating the Default Scripts . 72
86. Instance Variables and Generated Methods 72
87. Generated Get Selector Method for messageField 72
88. Modified Get Selector Method for messageField 73
89. Method: searchCustomerWithID: . 73
90. VisualAge Public Interface and Smalltalk Class Interface 74
91. Adding the IDnotFound Event to the Public Interface 75
92. Adding the searchCustomerWithID Action to the Public Interface 75
93. Adding the Nonvisual Part to the Free Form Surface 76
94. All Connections for this Approach . 77
95. Four Design Models for GUI to Host Mapping 84
96. Design and Implementation Steps . 90
97. Model-View Separation for the GUI Application 93
98. Customer Inquiry Screen . 98
99. List of Partners Starting with B . 98
100. Partner Selected for Update . 99
101. Update Screen . 99
102. Successful Update Screen . 100
103. Sequence of GUI Windows at the PWS 101
104. GUI Prototype in the Composition Editor 103
105. Connections for the GUI Prototype . 103

x Building GUIs

106. Host Applications Window . 105
107. Logon to CSP Sample Application . 106
108. Customer Application (Main) Window . 106
109. CustomerList Selection . 107
110. CustomerList Window . 108
111. Find in CustomerList Window . 109
112. Refresh CustomerList Window . 110
113. Multiple Instances of CustomerList Windows 110
114. Customer Detail Window (Address Page) 111
115. Writing a Letter for a Customer . 112
116. Customer Detail Window (Contacts Page) 113
117. Multiple Customer Detail Windows . 113
118. New Customer Window . 114
119. Application Browser for the CSP Sample Application 116
120. Class Hierarchy for the CSP Sample Application 117
121. Composition Editor View: Its3270Applications 119
122. Part Assembly: Its3270Applications . 119
123. Class Definition: Its3270Applications . 120
124. Composition Editor View: Its3270LogonToHostWindow 121
125. Part Assembly: Its3270LogonToHostWindow 122
126. Inheritance Hierarchy: Its3270LogonToHostWindow 123
127. Class Definition: Its3270LogonToHostWindow 123
128. Composition Editor View: Its3270SessionSelectionForm 124
129. Public Interface: Its3270SessionSelectionForm 125
130. Class Definition: Its3270SessionSelectionForm 125
131. Method: readActive3270Sessions . 126
132. Method: applySelection . 126
133. Public Interface: Its3270UserIdPasswordForm 128
134. Public Interface: Its3270UserIdPasswordForm 129
135. Class Definition: Its3270UserIdPasswordForm 129
136. Composition Editor View: ItsOkCancelHelpForm 130
137. Public Interface: ItsOkCancelHelpForm 131
138. Class Definition: ItsOkCancelHelpForm 131
139. Method: pbOk . 132
140. Method: pbCancel . 132
141. Method: pbHelp . 132
142. Composition Editor View: ItsCspSampleLogonWindow 133
143. Part Assembly: ItsCspSampleLogonWindow 134
144. Public Interface: ItsCspSampleLogonWindow 134
145. Class Definition: ItsCspSampleLogonWindow 135
146. Method: validateSession . 135
147. Method: sessionEstablished . 136
148. Composition Editor View: ItsProcessingWindow 137
149. Class Definition: ItsProcessingWindow 138
150. Public Interface: Its3270CommunicationSideInfo 140
151. Inheritance Hierarchy: Its3270CommunicationSideInfo 140
152. Class Definition: Its3270CommunicationSideInfo 141
153. Method: initializeTerminal . 141
154. Method: isSessionIdChangedWith: . 142
155. Method: screen . 142
156. Method: sessionId . 142
157. Method: sessionId: . 142
158. Method: terminal . 143
159. Public Interface: ItsCspSampleCommunicationSideInfo 144
160. Class Definition: ItsCspSampleCommunicationSideInfo 145

Figures xi

161. Method: initializeTransactionDirectory 145
162. Method: readTransactionDirectoryAt: . 145
163. Composition Editor View: ItsCSPSampleMainWindow (Part 1) 147
164. Composition Editor View: ItsCSPSampleMainWindow (Part 2) 148
165. Part Assembly: ItsCSPSampleMainWindow 148
166. Class Definition: ItsCSPSampleMainWindow 149
167. Method: showHostWindow . 149
168. Composition Editor View: ItsCspSampleCustomerListSelectionWindow 152
169. Part Assembly: ItsCspSampleCustomerListSelectionWindow 152
170. Public Interface: ItsCspSampleCustomerListSelectionWindow 153
171. Class Definition: ItsCspSampleCustomerListSelectionWindow 153
172. Method: pbOkPressed . 154
173. Composition Editor View: ItsCspSampleCustomerListModel 156
174. Part Assembly: ItsCspSampleCustomerListModel 156
175. Public Interface: ItsCspSampleCustomerListModel 157
176. Class Definition: ItsCspSampleCustomerListModel 157
177. Method: pressEnterandWaitforCursorPositionChanged 158
178. Method: readCustomerListAndBuildCollection 159
179. Method: refreshCustomerWith: and: and: 160
180. Method: sortListByName . 161
181. Method: sortListByNumber . 161
182. Method: startSelectionWith: and: and: 162
183. Method: startTransaction . 162
184. Composition Editor View: ItsStringMessagebox 164
185. Public Interface: ItsStringMessagebox 165
186. Class Definition: ItsStringMessagebox 165
187. Method: open . 166
188. Composition Editor View: ItsCspSampleCustomerListWindow (Part 1) 168
189. Composition Editor View: ItsCspSampleCustomerListWindow (Part 2) 168
190. Composition Editor View: ItsCspSampleCustomerListWindow (Part 3) 169
191. Part Assembly: ItsCspSampleCustomerListWindow 169
192. Public Interface: ItsCspSampleCustomerListWindow 170
193. Class Definition: ItsCspSampleCustomerListWindow 170
194. Method: doLocalSubselect . 171
195. Method: isItemSelected . 171
196. Method: sortListbox . 172
197. Composition Editor View: ItsCspSampleCustomer 175
198. Part Assembly: ItsCspSampleCustomer 176
199. Public Interface: ItsCspSampleCustomer 176
200. Class Definition: ItsCspSampleCustomer 177
201. Method: readNewCustomerWithId . 178
202. Method: updateCustomer . 179
203. Method: deleteCustomer . 180
204. Method: refreshCustomer . 181
205. Method: addCustomer . 182
206. Method: startTransaction . 183
207. Method: titel . 183
208. Method: titel: . 184
209. Composition Editor View: ItsCspSampleCustomerWindow (Part 1) . . . 186
210. Composition Editor View: ItsCspSampleCustomerWindow (Part 2) . . . 187
211. Part Assembly: ItsCspSampleCustomerWindow 188
212. Public Interface: ItsCspSampleCustomerWindow 189
213. Class Definition: ItsCspSampleCustomerWindow 189
214. Method: openFile . 190

xii Building GUIs

215. Composition Editor View: ItsCspSampleCustomerNotebookForm (Part
1) . 193

216. Composition Editor View: ItsCspSampleCustomerNotebookForm (Part
2) . 194

217. Composition Editor View: ItsCspSampleCustomerNotebookForm (Part
3) . 194

218. Public Interface: ItsCspSampleCustomerNotebookForm 195
219. Inheritance Hierarchy: ItsCspSampleCustomerNotebookForm 196
220. Class Definition: ItsCspSampleCustomerNotebookForm 196
221. Method: actualDate . 197
222. Method: initializeFields . 197
223. Composition Editor View:

ItsCspSampleExistingCustomerNotebookForm (Part 1) 198
224. Composition Editor View:

ItsCspSampleExistingCustomerNotebookForm (Part 2) 199
225. Part Assembly: ItsCspSampleExistingCustomerNotebookForm 199
226. Public Interface: ItsCspSampleExistingCustomerNotebookForm 200
227. Class Definition: ItsCspSampleExistingCustomerNotebookForm 200
228. Method: pbDialPressed . 201
229. Method: pbSendPressed . 201
230. Method: pbWriteLetterPressed . 201
231. Composition Editor View: ItsCspSampleCustomerNumberForm 202
232. Public Interface: ItsCspSampleCustomerNumberForm 203
233. Class Definition: ItsCspSampleCustomerNumberForm 203
234. Composition Editor View: ItsInformationLineForm 204
235. Public Interface: ItsInformationLineForm 205
236. Class Definition: ItsInformationLineForm 205
237. Method: initializeInfo . 206
238. Method: showInfo: text: . 206
239. Composition Editor View: ItsCspSampleNewCustomerWindow 207
240. Part Assembly: ItsCspSampleNewCustomerWindow 208
241. Class Definition: ItsCspSampleNewCustomerWindow 208
242. Method: addOneAndCloseWidget . 209
243. Composition Editor View: ItsCspSampleNewCustomerNotebookForm . 211
244. Class Definition: ItsCspSampleNewCustomerNotebookForm 212
245. The Find Fields Problem . 214
246. Host Screen . 215
247. Quick Form with Many Fields . 216
248. Fields Collected by Screen Field Monitor Tool 216
249. Composition Editor View: Screen Field Monitor 217
250. Connection Sequence for the Refresh Push Button 218
251. Class Definition: Screen Field Monitor 219
252. Method: countInputFieldItems . 220
253. Method: countOutputFieldItems . 220
254. Method: createItemsFromFields . 221
255. Method: createItemsFromInputFields . 221
256. Method: createItemsFromOutputFields 222
257. Method: initializeRefresh . 222
258. Method: listActiveSessions . 222
259. Method: playInputFieldrefreshedMusic 223
260. Method: playOutputFieldrefreshedMusic 223
261. Method: playRefreshFieldsMusic . 223
262. Method: refreshFields . 224
263. Method: screen . 224
264. Method: screen: . 224

Figures xiii

265. Method: screenKeyString . 224
266. Method: screenSessionId . 224
267. Tearing Off shortSessionId . 225
268. Adding a Menu with Session Id Options 226
269. Setting Parameters for a Connection . 227
270. All Connections Required to Switch Host Sessions 227
271. Session Id Options Menu . 228
272. Completed Application . 229
273. Abt3270Screen Part Settings . 230
274. jumpSession: Method . 231
275. Event-to-Script Connection for the jumpSession: Method 231
276. Providing the Session ID Parameter . 232
277. Assigning Session IDs to the Abt3270Screen Part 232
278. findMapInHost Method . 233
279. Event-To-Script Connection for the findMapInHost Method 234
280. Adding the foundVa10a Event to the Public Interface 235
281. Adding the GUI Application . 235
282. Connection foundVa10a to openOwnedWidget 236
283. User Selects Host Session G . 236
284. User Uses Host Session G . 237
285. GUI Application in Control . 237

xiv Building GUIs

Tables

 1. Actions and Events Triggered by the Abt3270Screen Part 10
 2. Outside Actions and Events that Trigger the Abt3270Screen Part 11
 3. Actions and Events Triggered by the Abt3270Terminal Part 13
 4. Naming Convention Used for VisualAge Parts 58
 5. Application Sizes . 77
 6. Suggested Naming Convention for Category Parts 82
 7. Event Trace: 3270 Applications Window 120
 8. Event Trace: Logon to Host Window . 123
 9. Scripts: Session Selection Form . 126
10. Event Trace: Session Selection Form . 126
11. Scripts: OkCancelHelpForm . 131
12. Event Trace: OkCancelHelp Form . 132
13. Scripts: CSP Sample Logon Window . 135
14. Event Trace: CSP Sample Logon Window 136
15. Scripts: 3270 Communication SideInfo 141
16. Scripts: Sample Communication SideInfo 145
17. Scripts: CSP Sample Main Window . 149
18. Event Trace: CSP Sample Main Window 149
19. Scripts: Customer List Selection Window 153
20. Event Trace: Customer List Selection Window 154
21. Scripts: CustomerListModel . 158
22. Event Trace: CustomerListModel . 162
23. Scripts: String Messagebox . 165
24. Scripts: Customer List Window . 170
25. Event Trace: Customer List Window (Part 1) 172
26. Event Trace: Customer List Window (Part 2) 173
27. Event Trace: Customer List Window (Part 3) 173
28. Scripts: Customer . 177
29. Event Trace: Customer . 184
30. Scripts: Customer Window . 189
31. Event Trace: Customer Window (Part 1) 190
32. Event Trace: Customer Window (Part 2) 191
33. Scripts: Customer Notebook Form . 196
34. Event Trace: Customer Notebook Form 197
35. Scripts: Existing Customer Notebook Form 200
36. Event Trace: Existing Customer Notebook Form 201
37. Scripts: Information Line Form . 205
38. Script: New Customer Window . 209
39. Event Trace: New Customer Window . 209
40. Event Trace: Existing Customer Notebook Form 212
41. Event Trace: Initialization of the Screen Field Monitor 217
42. Event Trace: Refresh Push Button Clicked 218
43. Event Trace: Screen Field Monitor Additional Logic 219
44. Scripts: Screen Field Monitor . 219

 Copyright IBM Corp. 1994 xv

xvi Building GUIs

Special Notices

This publication is intended to help application developers write GUI front ends
for existing host applications using VisualAge′s EHLLAPI support. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by VisualAge. See the PUBLICATIONS
section of the IBM Programming Announcement for VisualAge for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

CICS CICS OS/2
CICS/ESA CICS/MVS
CICS/VSE CICS/400
CICS/6000 CUA
DB2 DB2/2
DB2/400 DB2/6000
DRDA IBM
OS/2 Presentation Manager

 Copyright IBM Corp. 1994 xvii

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

Other trademarks are trademarks of their respective companies.

SQL/DS VisualAge

Lotus Lotus Development Corporation
OSF/Motif Open Software Foundation, Inc.
Wordperfect Novell, Inc.

xviii Building GUIs

Preface

This document explains VisualAge EHLLAPI support with a practical example. It
describes the process of building a graphical user interface (GUI) for an existing
host application. The document shows how a GUI front end can be used to add
value to an existing application by implementing new application functions on
the workstation and providing access to workstation tools.

A simple application with one input and one output map is used to explain the
principles of host and workstation control for VisualAge EHLLAPI applications.
Different implementation approaches for GUI front-end applications are
investigated, evaluated, and documented. Conclusions and recommendations
are provided.

This document is intended for application developers assigned the task writing
GUI front ends for existing host applications using VisualAge′s EHLLAPI support.
Some VisualAge knowledge is assumed.

How This Document is Organized
The document is organized as follows:

Part 1, “ VisualAge EHLLAPI Concepts”

• Chapter 1, “Client/Server Models”

This chapter introduces various client/server models based on a model
popularized by the Gartner Group. A short description of each of the five
client/server models is given.

• Chapter 2, “EHLLAPI”

This chapter introduces the EHLLAPI communication protocol and
explains the EHLLAPI support provided by VisualAge. Advantages and
disadvantages of the EHLLAPI communication protocol are described.

• Chapter 3, “Applying the VisualAge EHLLAPI Parts with a Simple
Example”

This chapter introduces the concept of host and workstation control for
an EHLLAPI-based GUI application. The chapter shows how the
VisualAge EHLLAPI parts can be applied based on a simple host
application with one input and one output map.

Part 2, “ Implementing the Sample Application”

• Chapter 4, “Design and Implementation Considerations”

This chapter provides general design and implementation considerations
for GUI applications built with VisualAge′s EHLLAPI support. It
addresses naming conventions for parts and applications, design models
for GUI applications, and the concept of model-view separation.

• Chapter 5, “Sample GUI Application Design Overview”

This chapter explains the objectives of our project and the design and
implementation steps we performed when building our sample
application.

• Chapter 6, “Designing the GUI”

 Copyright IBM Corp. 1994 xix

This chapter introduces the text based user interface of the existing host
application and a first-cut GUI design for our sample application.

• Chapter 7, “Running the Sample Application”

This chapter explains the functions of the sample application based on
windows captured during application execution.

• Chapter 8, “Implementation Walkthrough”

This chapter provides a detailed description of all of the parts that were
developed to implement the sample application. Hints and tips based on
our experience are provided.

• Appendix A, “Screen Field Monitor Tool”

This appendix provides information about a tool we developed during the
project. This tool makes it easier to find the input and output fields on
the host maps and relate them to the fields in the GUI windows.

• Appendix B, “Changing Host Sessions Dynamically without Using
Scripts”

This appendix shows an approach to dynamically selecting the host
session at application execution time.

• Appendix C, “Jumping to the 3270 Screen”

This appendix explains a method of jumping to the host 3270 emulator
session from a VisualAge EHLLAPI application.

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• Construction from Parts Architecture: Building Parts for Fun and Profit,
SC34-4488-00

• VisualAge User′s Guide and Reference, SC34-4490-00

• Introduction to Object-Oriented Programming with IBM Smalltalk,
SC34-4491-00

• VisualAge: Guide to the IBM Smalltalk Development Environment,
SC34-4492-00

• VisualAge: IBM Smalltalk Programmer′s Reference, SC34-4493-00

• VisualAge Communications Guide and Reference

• VisualAge Development Guide

• VisualAge Team Development Guide

• IBM Smalltalk Catalog of Classes

• Object-Oriented Interface Design: IBM Common User Access Gudelines,
SC34-4399, ISBN 1-56529-170-0

• Client/Server Computing with AD/Cycle Application Generators, GG24-3760

• OS/2 EE 1.3 EHLLAPI Programming Reference, S01F-0297

xx Building GUIs

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

How to Order ITSO Technical Bulletins (Redbooks)

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their IBM branch office.

Customers may order hardcopy redbooks individually or in customized sets,
called GBOFs, which relate to specific functions of interest. You may also
order redbooks in online format on CDROM collections, which contain the
redbooks for multiple products.

Acknowledgments
The advisor for this project was:

Christian Peterhans
International Technical Support Organization, San Jose Center

The authors of this document are:

Reginaldo W. Barosa
IBM Brazil

Urs Halter
IBM Switzerland

This publication is the result of a residency conducted at the International
Technical Support Organization, San Jose Center.

Thanks to the reviewers who contributed to improve this document.

International Technical Support Organization, San Jose Center

Preface xxi

xxii Building GUIs

Part 1. VisualAge EHLLAPI Concepts

 Copyright IBM Corp. 1994 1

2 Building GUIs

Chapter 1. Client/Server Models

VisualAge* is a new object-oriented application development environment in
which to build the client pieces of a client/server application. Client/server is an
exciting and rapidly changing area of computing requiring some form of
systematization. In this chapter we present our systematization of client/server
computing. We position the VisualAge application development environment and
some complementary tools that can be used to productively deliver client/server
function.

A client/server system consists of three logical components: clients, servers, and
a connecting network. In a client/server system it is essential that we have
separate client applications that request services from separate server
applications. The logical network that connects clients and servers, however,
need not be a physical network. Client and server applications may reside on
the same system.

So, in a client/server system we must have clients and servers. We can divide
the data processing between clients and servers in numerous ways. One model,
popularized by the Gartner Group, for systematizing the functions of clients and
servers has gained acceptance within the computing industry. This model is
two-dimensional. The two dimensions are application component and platform
distribution. At this level of abstraction there are three logical application
components—presentation, function, and data—and five levels of platform
distribution—distributed presentation, remote presentation, distributed function,
remote data management, and distributed data management (see Figure 1).

Figure 1. Client/Server Models

The key client/server strength of VisualAge lies in the distributed presentation,
remote presentation, and distributed function levels. We describe these three
models in 1.1, “Distributed Presentation” on page 4, 1.2, “Remote Presentation”
on page 4, and 1.3, “Distributed Function” on page 4. VisualAge, however, also
fully supports the remote data management and the distributed data

 Copyright IBM Corp. 1994 3

management functions delivered by the database and transaction manager
products. See 1.4, “Remote Data Management” on page 5 and 1.5, “Distributed
Data Management” on page 5.

1.1 Distributed Presentation
Distributed presentation occurs when the presentation, function, and data
components reside on the server platform and parts of the presentation
component reside on the client platform.

An example of distributed presentation is “screen scraping”—that is, an
application on the client platform on a workstation intercepts the 3270 data
stream from a program executing on a host computer. The emulator high-level
language application programming interface (EHLLAPI) makes it easier for the
client application to translate the 3270 data stream into a graphical user
interface (GUI), for example, OS/2* Presentation Manager*.

In this book we explore a specific client/server implementation in the distributed
presentation model illustrated in Figure 1 on page 3. To do this, we implement
a GUI for an application developed in CSP/AD and documented in Client/Server
Computing with AD/Cycle Application Generators, GG24-3760, using the EHLLAPI
support in VisualAge.

1.2 Remote Presentation
Remote presentation occurs when the function and data components reside on
the server platform and the presentation component resides on the client
platform. Remote presentation and distributed function are logically different
models, but they are combined for the purposes of presentation in this book in
1.3, “Distributed Function.”

1.3 Distributed Function
Distributed function occurs when the presentation component and parts of the
function component reside on the client platform and parts of the function
component and the data component reside on the server platform. Of the five
client/server models we discuss in this chapter, the distributed function model
offers the most flexibility and efficiency. With the distributed function model you
can expand and change the applications as your business grows and changes.
You also have the option of placing the function and data component on the most
cost-efficient platform. The cost of this flexibility and efficiency is the complexity
of the underlying infrastructure.

The distributed function model is also mechanism transparent, allowing access to
any kind of data, whereas with the remote data management and distributed
data management models, data must be stored in SQL format in a relational
database.

4 Building GUIs

1.4 Remote Data Management
Remote data management occurs when the presentation and function
components reside on the client platform and the data component resides on the
server platform.

Remote unit of work (RUW) in IBM’s Distributed Relational Database Architecture
(DRDA*) is an example of remote data management. The RUW level of DRDA is
a database feature and as such is available in the following IBM products:1

• DB2*
• DB2/2*
• DB2/6000*
• DB2/400*
• SQL/DS*.

VisualAge supports the RUW level of DRDA during both development and
execution.

Function shipping in the CICS* product family is another example of remote data
management. Function shipping is the ability of one program executing in one
CICS system, for example, CICS OS/2*, to transparently access data owned by
another, connected CICS system, for example, CICS/ESA*. Function shipping is
a transaction manager function and as such is available in the following CICS
products:

• CICS/ESA
• CICS/MVS*
• CICS OS/2
• CICS/6000*
• CICS/400*
• CICS/VSE*.

VisualAge supports CICS function shipping during both development and
execution.

1.5 Distributed Data Management
Distributed data management occurs when the presentation and function
components and parts of the data component reside on the client platform and
parts of the data component reside on the server platform.

Distributed unit of work (DUW) in DRDA is an example of distributed data
management. The DUW level of DRDA is a database feature and as such is
available only in DB2 V3.1. All products participating in DRDA will over time
support the DUW level.

VisualAge supports the DUW level of DRDA during both development and
execution.

1 DRDA is an open architecture. Several vendors have announced or made available products participating in DRDA.

Chapter 1. Client/Server Models 5

6 Building GUIs

Chapter 2. EHLLAPI

EHLLAPI is an interface provided by a terminal emulator that allows a program
to behave as a programmed operator. The program types keystrokes and reads
text from a host screen. The programmed operator can automate repetitive
tasks and provide better interfaces to existing (legacy) applications. Existing
applications do not need to be changed; they continue to operate as though a
user is providing input to them. They do not need to be aware that they are now
interacting with programs rather than real users.

EHLLAPI allows you to build programs that use pieces of existing applications.
For example, you can use EHLLAPI to capture an entire screen from the host.
Your new programs can use technologies such as VisualAge and Smalltalk while
maximizing the use of existing applications. Programs using EHLLAPI can also
enable new functions to be delivered in stages. New programs can coexist with
existing applications, and users of existing applications can migrate to the new
programs at their discretion.

EHLLAPI was designed to use the same communication protocol as existing
emulator programs; therefore all existing wiring and control units can continue to
be used.

Note: Because the communication protocol was designed to handle human
response times and speeds, EHLLAPI is best for low-volume transactions.
Massive transfers of data can be accomplished more quickly through
Advanced Program-to-Program Communications (APPC) or CICS-to-CICS
communications.

2.1 VisualAge′ s EHLLAPI Support
You can use VisualAge to build a workstation-based GUI that can access host
applications designed for 3270 terminals. A VisualAge application can interact
directly with the host application, and users can interact with the VisualAge
application rather than entering data in a 3270 terminal emulator session.

From the host application′s perspective, the VisualAge application functions like
a user at a 3270 terminal. There is no need to modify the host application.

To communicate with host applications, VisualAge uses EHLLAPI, a feature
provided by 3270 terminal emulators, such as OS/2 Communications Manager/2
(see Figure 2 on page 8).

 Copyright IBM Corp. 1994 7

Figure 2. System Structure for VisualAge EHLLAPI Support

As shown in Figure 2, VisualAge provides a layered interface to the EHLLAPI
functions. The dialog layer provides a simple get and put interface that is
independent of the underlying EHLLAPI protocol. The system layer provides a
lower level interface that still hides certain peculiarities of the underlying
EHLLAPI protocol, such as the command sequences to connect to and
disconnect from a host session. The system interface layer provides an
object-oriented interface to the EHLLAPI dynamic link library (DLL).

For details refer to the VisualAge Communications Guide and Reference online
manual.

2.1.1 Understanding VisualAge EHLLAPI Parts
Figure 3 on page 9 shows the nonvisual parts that VisualAge provides to
implement the three layers of VisualAge EHLLAPI support.

8 Building GUIs

Figure 3. VisualAge EHLLAPI Support

2.1.1.1 The Abt3270Screen Part
The Abt3270 Screen part represents a single formatted panel on the 3270 host
screen as two records (input and output). By treating the screen as a record this
part simplifies the coding needed to have an application work with the host
screen.

One of the instance variables kept in the Abt3270Screen part is the keyString,
which must match a unique character string on the 3270 host screen before any
action can complete. If this variable is defined as an empty string, it will match
all screens.

The Abt3270Screen part provides a simple get and put interface to the host
application.

2.1.1.2 The Abt3270Terminal Part
The Abt3270Terminal part is a subpart of the Abt3270Hllapi part and provides all
of the functions of its parent part. In addition, it hides the command sequences
required for a workstation to connect to and disconnect from a host session and
provides an easier protocol for interacting with a host application.

This terminal-level protocol can be expanded as users discover more generally
useful functions. If an appropriate high-level protocol is not available, an
application can still access any basic EHLLAPI functions directly or extend this
part with new actions.

Basic EHLLAPI functions need to be processed inside a doOperation: or
doWindowOperation: block. This reduces the number of EHLLAPI connect and
disconnect sequences.

Chapter 2. EHLLAPI 9

The actions generally return either a useful object or a return code if successful,
or an Abt3270HllapiError object if an unanticipated error occurs. This can be
checked by using the isError protocol.

2.1.1.3 The Abt3270HllapiError Part
An instance of an Abt3270HllapiError part is returned by an Abt3270Terminal
when it encounters an unexpected error. Develpers cannot easily access the
Abt3270HllapiError object because it is not part of the visual programming
interface.

2.1.1.4 The Abt3270Hllapi Part
The Abt3270Hllapi part provides the basic EHLLAPI functions as defined by
reference manuals such as the OS/2 EE 1.3 EHLLAPI Programming Reference,
S01F-0297. It provides a basic interface that encapsulates the functions in the
EHLLAPI DLL.

Users should place enhancements built on top of the primitive EHLLAPI DLL
operations in a subpart, such as the Abt3270Terminal, rather than extending the
protocols available in the Abt3270Hllapi part.

When possible, the same action names and terms as those used in the EHLLAPI
reference manuals are used. Refer to those manuals for complete details about
return codes and interdependencies.

Many of the EHLLAPI functions behave differently depending on the value set for
the EHLLAPI session parameters. Those parameters are global for the entire
Smalltalk image and are set to reasonable defaults so that several programs
running in one Smalltalk image can depend on consistent settings.

The EHLLAPI term host presentation space (host PS) refers to the text and
attributes that are displayed in the terminal window. Most functions against a
host PS take an offset into that PS and require that a connectHostPS operation
be performed first.

The isHllapiActive message can be sent to find out whether EHLLAPI is installed
and available. It will also open (or reopen) the EHLLAPI DLL and set the default
sessionParameters. The default sessionParameters are also automatically set the
first time the Abt3270Hllapi function is requested (because this part controls the
initial opening of the DLL).

2.1.2 Abt3270Screen Actions and Events
Table 1 shows the events triggered by the Abt3270Screen part.

Table 1 (Page 1 of 2). Actions and Events Triggered by the Abt3270Screen Part

Action Event Raised Comments

clearInput keySent

getFieldData dataRefreshed

pressXXXX keySent
Can be:
pressClear, pressEnter, pressPA:,
pressPF:

10 Building GUIs

Table 1 (Page 2 of 2). Actions and Events Triggered by the Abt3270Screen Part

Action Event Raised Comments

putData dataSent

Update the screen with the data in
the inputFields record. A field is
updated only if the contents of the
inputFields record is different from
the current contents of the host
screen.

refreshFieldDefs fieldDefsRefreshed
Learn the field definitions for both
input and output from the current
host screen.

2.1.2.1 Understanding the screenChanged Event
The screenChanged event must be used when you need host control for your GUI
application. It is important to understand when and how often the
screenChanged event is raised, as this event triggers the whole application in an
implementation with host control. See 3.3, “Implementing a GUI with Host
Control” on page 21 for details.

Table 2 shows the outside events that trigger actions of the Abt3270Screen part.

Note that the screenChanged event can be raised multiple times for a host
screen change because the host updates the screen in several short blocks, and
each block raises one screenChanged event.

Sometimes a screenChanged event is raised, but the data for the host map field
has not been sent. To prevent such problems, the Abt3270Screen part provides
the Screen Settle Time.

The Screen Settle Time represents a window, defined in seconds, during which
screenChanged events are collected and reported as a single event. The Screen
Settle Time should be set to the response time for the network. The Screen
Settle Time can be specified in multiples of 1 second; 1 second is the default.

In Figure 4 on page 12 the Screen Settle Time is set once to 0 seconds and once
to 5 seconds, and the host sends the data for one host 3270 screen as five
blocks. With the Screen Settle Time set to 0 seconds each host block sent
results in one screenChanged event raised; that is, for the five host blocks sent
you will see five screenChanged events. With the Screen Settle Time set to 5
seconds all screenChanged events received during the 5-second window are
collected and reported as one screenChanged event at the end of the 5-second
window; that is, for the five host blocks sent you will see one screenChanged
event.

Table 2. Outside Actions and Events that Trigger the Abt3270Screen Part

Action Raised Event Comments

3270 screen is
modified

screenChanged
This event is raised when a host
session is updated by the user or
the system

Chapter 2. EHLLAPI 11

Figure 4. screenChanged Events and Settle Time

 Conclusion

The Screen Settle Time has an impact on response time if the screenChanged
event triggers the application.

In the example illustrated in Figure 4, with the Screen Settle Time set to 5
seconds, application response time is always more than 5 seconds.

It would be nice to have the Screen Settle Time set to zero whenever possible.
However, if the screenChanged event triggers your GUI application, and the
application logic is sensitive to the number of times the event is raised, you
need to specify a value for the Screen Settle Time.

Sometimes it may be hard to find the best value for the Screen Settle Time
especially if your application executes on local and network-attached
programmable workstations (PWSs) with very different network response time
characteristics or your network has large fluctuations in network response time.

You may want to consider using the Abt3270Terminal part instead of the
Abt3270Screen part and having application control at the PWS rather than the
host (see 3.3.1.3, “Advantages and Disadvantages of This Approach” on
page 31).

2.1.2.2 Visualizing Events in the Transcript Window
Because the VisualAge environment is an event and action environment, it is
sometimes important to know when and how often a specific event is raised. For
example, to find out how often a screenChanged event is raised you can write a
simple VisualAge script that writes a text to the transcript window (see Figure 5).

screenWasChanged
″when screen is changed, write in transcript″
 Transcript show: ′ Screen Changed Raised′ ; cr.

Figure 5. Script That Writes to the Transcript Window

12 Building GUIs

You can now create an event-to-script connection from the screenChanged event
to your script (see Figure 6).

Figure 6. Event-to-Script Connection

Each time the screenChanged event is raised the text from the script is written to
the transcript window. Figure 7 shows the transcript window after several host
screenChanged events were raised during application testing.

Figure 7. Transcript Window after Several screenChanged Events

2.1.3 Abt3270Terminal Actions and Events
Table 3 shows the events triggered by the Abt3270Terminal part.

Note: In the beta code we used for our project the errorOcurred event was
never raised, which was a bug in the code.

The example in the online documentation is also wrong. The
errorOcurrred event is not raised when you attempt the type: action with
the cursor positioned in a write-protected location. What happens in this
case is that the terminal is reset and the cursor is back-tabbed to an
unprotected field. If the host map has no unprotected fields, nothing
happens.

Table 3. Actions and Events Triggered by the Abt3270Terminal Part

Action Raised Event Comments

findString:
searchSuccessful
or
searchFailed

Perform the findString: action

Various errorOccurred
For example, type: has been
attempted with the cursor in a
write-protected location.

Chapter 2. EHLLAPI 13

2.2 Why Use EHLLAPI?
You can use the EHLLAPI functions to interface with legacy applications,
automate repetitive tasks, and perform low-volume transactions. These
functions are also useful for prototyping and implementing new applications
quickly, without waiting for software or hardware upgrades to support better
communication protocols.

Using the EHLLAPI objects, you can isolate a program from the details of the
origin of the data; the same application can continue to be used even if the
source of the data changes.

You can reuse VisualAge EHLLAPI programs by subclassing them and overriding
only the methods you need to make those programs work in a particular
environment.

Because VisualAge′s EHLLAPI support can dynamically capture the format of the
host screen, minor changes that do not affect the order of the fields will not
affect your application.

2.3 Advantages and Disadvantages of Using EHLLAPI
Some of the advantages of using EHLLAPI and VisualAge are as follows:

• You do not have to change host applications to enable them to communicate
with the workstation.

• You do not have to understand communications protocols.

• There is no need for complex hardware and software; EHLLAPI uses OS/2
Communications Manager/2.

• Communication between applications running in different environments is
enabled. For example, you can write a VisualAge application that transfers
data from IMS/DC to CMS, TSO, or CICS using the 3270 screen as the
interface (see Figure 8 on page 15).

• It is easy to pass data from host applications to workstation products, such
as Lotus** and Wordperfect**.

For example, you can write a VisualAge application that executes an existing
host application that displays the address of a customer in the host screen.
The VisualAge application takes the data and starts a Wordperfect task that
writes a letter to the customer.

• Changes to the host application that do not modify the screen do not affect
the VisualAge application.

• Minor changes to host screens that do not affect the order of the fields do
not affect your application.

14 Building GUIs

Figure 8. Application Integration through EHLLAPI Application

Some of the disadvantages of using EHLLAPI and VisualAge are as follows:

• Error handling is not as sophisticated as in other protocols, such as APPC or
CICS-to-CICS communications.

• Performance is not as good as in other protocols.

• A LUW cannot span environments.

• EHLLAPI programs are very sensitive to changes in their environment, which
makes them hard to reuse. This sensitivity is due to the number of
parameters that must be adjusted to get EHLLAPI programs to work in a
particular environment. The VisualAge EHLLAPI support makes EHLLAPI
programs more protocol independent and therefore easier to reuse.

• Some applications have complex host maps that require good Smalltalk
skills.

Chapter 2. EHLLAPI 15

16 Building GUIs

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple
Example

Before you start coding a real production GUI application that uses VisualAge′s
EHLLAPI support, we suggest that you use a simple application to learn the
concepts. This chapter describes a simple application that we created and used
during our project and explains the lessons we learned and our conclusions.

3.1 Sample Application
To understand the VisualAge EHLLAPI parts we coded a sample application with
one input and one output map. We used CSP/AD to create our sample
application, but you can use any other tool, such as REXX, to create a similar
example. Figure 9 and Figure 10 show the host maps of our simple host
application. The protected map fields are marked with asterisks (*), and the
unprotected map fields with dashes(-).

� �
VA10M01 HOST APPLICATION - First Map

Enter ID...... ----

 **
 PF3=END

� �
Figure 9. Host Application Map 1. This map has one unprotected (-) and one protected
(*) field.

� �
VA10M02 HOST APPLICATION - Second map

Name ****************

 **
 ENTER=RETURN

� �
Figure 10. Host Application Map 2. This map has two protected (*) fields.

Figure 11 through Figure 13 on page 18 show a sample execution sequence of
the 3270 host screens:

• The user enters a valid ID (20) and presses the Enter key.

� �
VA10M01 HOST APPLICATION - First Map

Enter ID...... 20

 PF3=END� �
Figure 11. Host Application Input Map

 Copyright IBM Corp. 1994 17

• The second map is shown, and the user presses the Enter key to return to
the first map.

� �
VA10M02 HOST APPLICATION - Second map

Name REGI ANDORINHA

 PRESS ENTER TO RETURN
 ENTER=RETURN� �

Figure 12. Host Application Output Map

• If an invalid ID is entered on the first map, a message appears in the
message line of the first map as shown in Figure 13.

� �
VA10M01 HOST APPLICATION - First Map

Enter ID...... 11

 ENTER ID (10 OR 20)
 PF3=END� �

Figure 13. Host Application Input Map with an Invalid ID

Note that we can distinguish the following two situations in this simple
application:

• The user enters an invalid ID; the first map is reshown with a message.

• The user enters a valid ID; the second map is shown with the requested data
and a message.

3.2 Possible GUI Implementations
When you create a GUI application using VisualAge′s EHLLAPI support you have
several implementation alternatives. You can use the Abt3270Screen part, the
Abt3270Terminal part, or a combination of the two. You also may have to write
VisualAge scripts in certain situations. Which implementation alternative you
choose depends on the existing host application and the functional requirements
of your new GUI application.

An important design decision for your new GUI application is whether the
application should be controlled from the host or the PWS.

Having control at the host means that the host session triggers actions and
events of the GUI application on the PWS. Each time the host 3270 screen
changes, the screenChanged event is raised and triggers the actions to be taken
by the GUI application.

Host control for a VisualAge EHLLAPI application must be implemented with the
Abt3270Screen part .

Host control for a VisualAge EHLLAPI application can be compared to the
asynchronous communication that is required by certain applications. For a
simple example of a host-controlled VisualAge EHLLAPI application, see 3.3,
“Implementing a GUI with Host Control” on page 21.

18 Building GUIs

Having control at the PWS means that the VisualAge EHLLAPI application
triggers the events and actions to execute functions at the host side. For
example, the findString action searches for a text string in the 3270 host map
and, depending on whether the text string is found or not, raises either the
searchSucessful or the searchFailed event. The VisualAge EHLLAPI application
on the PWS decides what to do next depending on the raised event.

PWS control for a VisualAge EHLLAPI application must be implemented with the
Abt3270Terminal part .

PWS control for a VisualAge EHLLAPI application can be compared to
synchronous communication. The PWS triggers an action and waits for an
answer in the form of an event. For a simple example of a PWS-controlled
VisualAge EHLLAPI application, see 3.4, “Implementing a GUI with PWS Control”
on page 44.

We investigated the following alternatives to implement host or PWS control for
the VisualAge EHLLAPI application that provides a GUI for our simple host
application:

• Control at the host

− Use the Abt3270Screen part only

− Use the Abt3270Screen part and the Abt3270Terminal part.

• Control at the PWS

− Use the Abt3270Terminal part, but no VisualAge scripts, only visual
programming

− Use the Abt3270Terminal part, and VisualAge scripts.

Figure 14 on page 20 shows the two approaches we used to implement a GUI
front end with host control for our simple host application.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 19

Figure 14. Host Control Implementations

Figure 15 shows the two approaches we used to implement a GUI front end with
PWS control for our simple host application.

Figure 15. PWS Control Implementations

20 Building GUIs

3.3 Implementing a GUI with Host Control
As mentioned before, you must use the Abt3270Screen part to implement host
control for your VisualAge EHLLAPI application. We implemented two alternative
approaches without writing VisualAge scripts as follows:

• Using the Abt3270Screen part only

• Using the Abt3270Screen part and the Abt3270Terminal part.

Details of our implementations are provided below.

3.3.1 Abt3270Screen Part Only
Figure 16 shows our implementation using the Abt3270Screen part only.

Figure 16. Sequence of Events and Actions Using the Abt3270Screen Part

The sequence of events and actions is as follows:

 1. The user clicks on the Execute push button, which triggers the putData action
to send the input data to the host.

 2. After sending the input data, the pressEnter action is sent to the host.

 3. The host application executes the Enter key based on the pressEnter action.

 4. The screenChanged event is raised when the host screen changes and either
MAP1 or MAP2 is shown. The screenChanged event is raised in each
Abt3270Screen part in the VisualAge EHLLAPI application. Only the
Abt3270Screen part for which the key string matches (MAP 1 or MAP 2)
executes the getData action, as follows:

• If the user entered an invalid ID, a message is shown in MAP1, and this
message appears in the first GUI window.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 21

• If the user entered a valid ID, MAP2 is shown at the host.

 5. When MAP2 is shown and getData is executed, the dataRefreshed event is
raised and triggers the openWidget action to open the second GUI window.
The data from the host map is shown in the second GUI window.

 6. The user clicks on the Return push button, which triggers the pressEnter
action for MAP2.

 7. The host application executes the Enter key.

 8. Clicking on the Return push button also executes the closeWidget action, and
the second GUI window is closed.

 9. The user clicks on the End push button, and the pressPF:3 action is sent to
the host.

10. Clicking on the End push button also triggers the closeWidget action to close
the first GUI window.

3.3.1.1 Coding the Application
Perform the following steps to code a VisualAge EHLLAPI front end using the
Abt3270Screen part only:

 1. Start the host session using Communications Manager/2 and the host
application for which you create the GUI windows. In our example the host
session was defined as G.

Note: It is important to have the session active before starting the
Composition Editor. If you try to start the Composition Editor for a
VisualAge application that includes Abt3270Screen parts and the
session defined in those Abt3270Screen parts is not started, you will
receive a Smalltalk walkback window, as shown in Figure 17.

Figure 17. Debugger Window When Session Not Available

 2. Start VisualAge and create an application and a visual part. Be sure to
follow a naming convention for the part names. Refer to 4.1.2, “Naming
Convention for Parts” on page 81 for a proposed naming convention.

 3. Using the Composition Editor, drag the Abt3270Screen part from the parts
palette and drop it on the free form surface.

22 Building GUIs

 4. Select the 3270 Screen icon that you dropped and double-click mouse button
1. Figure 18 on page 23 shows the screen settings for the first host screen.
Do not forget to click on the Build Screen Records push button to initiate
VisualAge′s parsing of the host screen to capture the protected and
unprotected fields.

Be sure to select a unique text string on the host screen to use for the Key
String field. The Key String can be up to 132 characters long. The
Abt3270Screen part uses the Key String together with the specified session
ID to decide whether a raised event is relevant for this particular
Abt3270Screen part. A blank Key String matches every Abt3270Screen part
in the application.

If your host screens do not have unique text strings that can be used as key
strings, you may want to use the Abt3270Terminal part or VisualAge scripts.

Note: To ensure that the specification for the Key String exactly matches
what is defined on the host screen you may want to use the OS/2
copy/paste functions to copy the text string from the host screen and
paste it on the 3270 screen settings.

Figure 18. 3270 Screen Settings: Abt3270Screen Part Only

 5. With the 3270 Screen icon selected, click mouse button 2 and select Tear-Off
Attributes from the pop-up menu to tear off inputFields and outputFields as
shown in Figure 19 on page 24.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 23

Figure 19. Tear-Off Attributes

 6. With the inputFields of the 3270 Screen icon selected, click mouse button 2
and select Quick Form from the pop-up menu to create a quick form for self
(or FieldNumber1). Move the mouse to the desired position in the window
part and click mouse button 1. Figure 20 shows the result of the operation.

Figure 20. Create the Input Field

 7. Identify which output field represents the message field and must be
connected to the window.

24 Building GUIs

VisualAge collects all protected fields as output fields when it parses the
host screen. Not all protected fields are actually output fields for the
application. Some of the protected fields contain constants, such as titles
and field names. Therefore VisualAge collects more output fields than you
might expect. For example, for our simple application VisualAge collected
five output fields, and the only one we needed to connect (Msg) was
FieldNumber2.

It is hard to map the input and output fields collected by VisualAge to the
actual fields on the host screen, especially when the host screen contains a
considerable number of unprotected and protected fields. Because
VisualAge parses the host screen and not the code of the host map, the field
names assigned by VisualAge do not correspond to the logical names used
in the host application. All fields are named FieldNumberx (where x is a
sequence number), which does not make the mapping any easier.

You can use the Quick Form option to map all input and output fields to a
window and then execute the application to get the values of all fields. This
approach can be useful with host screens with only a few fields.

Figure 21 shows the output fields for our simple application.

Figure 21. 3270 Screen Output Fields

We created a tool during our project to make the input and output field
mapping easier. This tool, the Screen Field Monitor, is an independent
application that collects all input and output fields from the host screen and
shows their contents, position, and size in two list boxes. Appendix A,
“Screen Field Monitor Tool” on page 213 provides more details about this
tool. Figure 22 on page 26 shows the input and output fields for Map1 using
our tool.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 25

Figure 22. Input and Output Fields for Map1 Using the Screen Field Monitor

 8. Connect the output field that contains the host message (FieldNumber2) to
the first window. Figure 23 shows the result of the operation.

Figure 23. Connecting Map1 Output Field

 9. Drag two push button parts from the parts palette and drop them on the
window. Align the push buttons and label them Execute and End,
respectively.

10. Make two connections from the Execute push button to the 3270 Screen:

• Connect the Execute push button (#clicked) to 3270 Screen (#putData).

26 Building GUIs

• Connect the Execute push button (#clicked) to 3270 Screen (#pressEnter).

The sequence in which you define the connections corresponds to the
execution sequence of the application. Be sure to make the connections in
the correct sequence.

11. Connect the 3270 Screen to itself:

• Connect 3270 Screen (#screenChanged) to 3270 Screen (#getData).

Figure 24 shows the settings for the connections.

Figure 24. Connections for First GUI Window

12. Create the GUI window for the second host screen as you did for the first
host screen.

We used the Screen Field Monitor to identify the output fields for host Map2.
Figure 25 on page 28 shows the input and output fields of host Map2 using
our tool.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 27

Figure 25. Input and Output Fields for Map2 Using the Screen Field Monitor

The output fields to be connected are FieldNumber1 (Name) and
FieldNumber3 (Msg). Figure 26 shows the second GUI window and the
output field settings.

Figure 26. Output Fields for Map2

• The second host screen has no input fields and it is not necessary to
tear off attributes for input fields.

28 Building GUIs

• The Key String for 3270 Screen1 must be set to a unique text string on
the second host screen (Map2).

13. Connect 3270 Screen1 to itself:

• Connect 3270 Screen1 (#screenChanged) to 3270 Screen1 (#getData).

14. Connect 3270 Screen1 to the second window:

• Connect 3270 Screen1 (#dataRefreshed) to window1 (#openWidget).

The second GUI window will be opened when the second map is shown at
the host. Figure 27 shows the second GUI window and its connection
settings.

Figure 27. Connections for Second GUI Window

15. Final connections:

• Connect the Return push button (#clicked) to 3270 Screen1 (#pressEnter).

• Connect the Return push button (#clicked) to window1 (#closeWidget).

• Connect the End push button (#clicked) to the 3270 Screen (#pressPF:).

• Double-click on the dashed (---->) line, select Set Parameter, and enter
3 (PF3 ends the application).

• Connect the End push button (#clicked) to the first window
(#closeWidget).

Figure 28 on page 30 shows all connections.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 29

Figure 28. All Connections: Abt3270Screen Part Only

3.3.1.2 Executing the Application
Figure 29 through Figure 31 on page 31 show what the user sees when the
applicaton is executing. In the figures, the host screens are black, and the GUI
windows are shown as the active windows.

The steps to execute the application are as follows:

 1. The user enters a valid ID (20) and clicks on the Execute push button.

Figure 29. User Enters a Valid ID

 2. The second window is displayed.

30 Building GUIs

Figure 30. Second Window is Displayed

 3. The user clicks on the Return push button on the second window, enters an
invalid ID (22) in the first window, and clicks on the Execute push button.

 4. A message is displayed in the first window.

Figure 31. User Enters Invalid ID

3.3.1.3 Advantages and Disadvantages of This Approach
 Advantages

• Easy to code

• Does not require Smalltalk skills; all coding is visual.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 31

 Disadvantages

• Hard to identify the input and output fields during development. For
example, one host screen can have 50 or 60 output fields, and it is
difficult to identify the fields.

This disadvantage disappears when using the tool we created during our
residency project. See Appendix A, “Screen Field Monitor Tool” on
page 213 for details of this tool.

• Poor response time compared to other implementations during execution
(testing and run time) because of the Screen Settle Time delay. The
Screen Settle Time specified in the Abt3270Screen part settings adds to
the normal response time for the application.

• The host session must be active at development and run time when using
the Abt3270Screen part. For example, if a developer specifies session G
in the settings for the Abt3270Screen part, the G session always must be
started when the Composition Editor for the part containing the
Abt3270Screen part is started and when the packaged application is
executing.

3.3.2 Abt3270Screen Part and Abt3270Terminal Parts
In this section we describe the implementation where we mixed the
Abt3270Screen part and Abt3270Terminal part with VisualAge scripts (see
Figure 32 on page 33). We decided not to use the getData action of the
Abt3270Screen part because we wanted to avoid the Screen Settle Time delay.
We also wanted to demonstrate that the Abt3270Screen part and the
Abt3270Terminal part can be combined but application control can still be at the
host . Note that we used two Abt3270Terminal parts and one Abt3270Screen part
for this implementation.

32 Building GUIs

Figure 32. Sequence of Events and Actions When Using Abt3270Terminal Parts and an
Abt3270Screen Part

The sequence of events and actions is as follows:

 1. The user clicks on the Execute push button, and the keyHome action moves
the cursor to the first input field on the host screen (this ensures that data is
entered in the correct position).

 2. The enterCommand action sends the input data to the host and activates
Enter.

 3. The host application executes the Enter key.

 4. The screenChanged event is raised when the host screen changes and either
MAP1 or MAP2 is shown. The findString action is executed for each
Abt3270Terminal part, as follows:

• If the user entered an invalid ID, a message is shown in MAP1, and this
message appears in the first GUI window.

• If the user entered a valid ID, MAP2 is shown at the host.

 5. This step depends on which host screen is shown and therefore which
findString action yields the searchSuccessful event.

If the first host screen (Map1) is shown and the findString action raises the
searchSuccessful event, the readMessage action (script) is executed.

If the second host screen (Map2) is shown and the findString action raises
the searchSuccessful event, the openWidget action is executed to open the
second GUI window.

 6. If the first host screen (Map1) is shown at the host, the readMessage action
moves the message information to the first GUI window.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 33

If the second host screen (Map2) is shown, the searchSuccessful event as a
result of the successful execution of the findString action triggers the
execution of the readMessage and readName actions.

 7. The readMessage and readName actions move the message information (or
blanks) and the contents of the name fields to the second GUI window.

 8. The user clicks on the Return push button, which executes the closeWidget
action, and the second GUI window is closed.

 9. Clicking on the Return push button also triggers the pressEnter action for
MAP2.

10. The host application executes the Enter key.

11. The user clicks on the End push button, and the pressPF:3 action is sent to
the host.

12. Clicking on the End push button also triggers the closeWidget action to close
the first GUI window.

3.3.2.1 Coding the Application
Perform the following steps to code a VisualAge EHLLAPI front end using a
combination of an Abt3270Screen part and two Abt3270Terminal parts:

 1. Start the host session using Communications Manager/2 and the host
application for which you create the GUI windows. In our example the host
session was defined as A .

Note: It is important to have the session active before starting the
Composition Editor. If you try to start the Composition Editor for a
VisualAge application that includes Abt3270Screen parts and the
session defined in those Abt3270Screen parts is not started, you will
receive a Smalltalk walkback window.

 2. Start VisualAge and create an application and a visual part. Be sure to
follow a naming convention for the part names. Refer to 4.1.2, “Naming
Convention for Parts” on page 81 for a proposed naming convention.

 3. Using the Composition Editor, drag the Abt3270Screen part from the parts
palette and drop it on the free form surface. Even though we used the
Abt3270Terminal part, we needed an Abt3270Screen part for the
screenChanged event for host control.

 4. Select the 3270 Screen icon that you dropped and double-click mouse button
1. Figure 33 on page 35 shows the screen settings for the first host screen.

For this example we specified the A session in the Terminal Short Session ID
field; specification of a Key String is not required. You do not need to click
on the Build Screen Records push button, as host screen parsing is not
required for this example.

34 Building GUIs

Figure 33. 3270 Screen Settings: Abt3270Screen and Abt3270 Terminal Parts

 5. Using the Composition Editor, drag two Abt3270Terminal parts from the parts
palette and drop them on the free form surface (one for each host screen).
Add two data entry fields to the free form surface. These two data entry
fields are used to specify a text string that uniquely identifies each of the
host screens. Double-click on the data entry fields to open their settings
view, which allows you to define a static text string for each of the data entry
fields. In our example, we specified the host map Ids VA10M01 and
VA10M02 (see Figure 34).

Figure 34. Adding the Abt3270Terminal Parts

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 35

We used two Abt3270Terminal parts in this example because the findString
action is used twice (once for each host screen), and we would not have
been able to distinguish which execution of the action was successful when
using a single Abt3270Terminal part.

We could have used a script instead of two Abt3270Terminal parts.

 6. Connect the 3270 Screen, the 3270 Terminal, and the data entry field as
follows:

• Connect 3270 Screen (#screenChanged) to 3270 Terminal (#findString:).
This is an incomplete connection (dashed); the next connection will
provide the value of the data entry field.

• Connect Text1 (#string) to the connection (#aString).

Figure 35 shows the connections for the first Abt3270Terminal part.

Repeat step 6 to create the connections for the second Abt3270Terminal part.

Figure 35. Connecting the Abt3270Screen Part and the Abt3270Terminal Part

 7. Connect the Execute push button to the first Abt3270Terminal part:

• Connect the Execute push button (#clicked) to 3270 Terminal(#keyHome).

• Connect the Execute push button (#clicked) to 3270 Terminal
(#enterCommand:).
This is an incomplete connection (dashed); the next connection will
provide the value of the Enter ID field.

Connect the Text3 field (#string) to the connection (#aString).

The sequence in which you define the connections corresponds to the
execution sequence of the application. Be sure to make the connections in
the correct sequence. Figure 36 on page 37 shows the settings for the
connections.

36 Building GUIs

Figure 36. Connecting the Execute Button

 8. The connections for the second GUI window are as follows:

• Connect 3270 Terminal1 (#searchSucessful) to Window1 (#openWidget)

• Connect the Return push button (#clicked) to 3270 Terminal1 (#keyEnter)

• Connect the Return push button (#clicked) to Window1 (#closeWidget).

Figure 37 shows the settings for the connections.

Figure 37. Connections for Second GUI Window

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 37

At this point we had some connections, but we needed to get the data from the
host screens into our windows. We created two VisualAge scripts for that
purpose.

3.3.2.2 Using the VisualAge Script Editor to Create Instance
Methods
We did not use the getData action to get the data from the host screens, we used
the stringAt:for: action. This action returns the contents of the screen starting
from a specific row and column on the host screen and in a specified length.
The action takes two parameters. The first parameter is the location on the
screen (point), and the second parameter is an integer specifying the length.

We decided to provide the required parameters for the stringAt:for: action
through two VisualAge scripts. Alternatively we could have specified the
required parameters through the settings view of the event-to-action connection
from searchSuccessful to stringAt:for:.

We used the VisualAge Script Editor to create the Smalltalk instance methods
(scripts in VisualAge). We created two methods, readMessage and readName, to
get the data from the host screens and put it into the GUI windows. Perform the
following steps to create the methods:

 1. Select View from the action bar and then Script Editor to switch to the Script
Editor. Select Methods from the action bar of the Script Editor and then New
Method Template (see Figure 38).

Figure 38. Creating a New Method

 2. To create the method, type the method name (readMessage) in the template
(replace messagePattern), provide a description for your new method
(between quotes), and delete the other lines (temporaries, statements).

 3. Select the Action icon from the tools palette.

38 Building GUIs

 4. Form the subparts list, select 3270 Terminal, and from the actions list select
stringAt:for: (see Figure 39).

 5. Click on the Paste push button to paste the selected method to your Script
Editor. You need to modify the pasted method to suit your needs.

Figure 39. Action Selection for Method Creation

 6. Change the arguments of the pasted method to the position of the host field
(message field) and provide the field length. Change “<aPoint (Point)>
with: <aLength (Integer)>” to “2 @ 5 with: 72.”

 7. Add a caret ^ before self to get the string value.

 8. Select File from the action bar and then Save Script to save the method. The
finished readMessage method is shown in Figure 40.

Figure 40. Method: readMessage

Repeat the previous steps to create the readName method. This method will get
the field Name located at row 3, column 15, and length 14 from the host screen.
The finished readName method is shown in Figure 41 on page 40.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 39

readName
″Using Terminal Part it reads the field located at
position : column 15 of line 3 with size of 14″
^(self subpartNamed: #′3270 Terminal1′)
performActionNamed: #stringAt:for:
withArguments: (Array with: 15 @ 3 with: 14).

Figure 41. Method: readName

3.3.2.3 Event-to-Script Connections
At this point you have most of the connections and the methods to get the data
from the host, but you need to tell VisualAge when to execute the methods. You
need to make the following connections:

 1. Switch back to the Composition Editor.

 2. Click mouse button 2 on the 3270 Terminal and select Event-to-script
connection....

 3. Select the searchSucessful event and the readMessage script in the settings
view (see Figure 42).

Figure 42. Event-to-Script Connections for One Terminal

 4. Repeat Steps 1 through 3 for the 3270 Terminal1. 3270 Terminal1 has two
event-to-script connections, one for readMessage and one for readName.
Figure 43 on page 41 shows the connections for both 3270 terminals.

40 Building GUIs

Figure 43. Event-to-Script Connections for Both Terminals

 5. Now, you must move the data retrieved by the methods to the GUI windows.
To connect the result of the event-to-script connections to the GUI window
fields, click mouse button 2 on the Event-to-script connection and connect the
result to the Msg field (see Figure 44). The connection is from the result of
the method execution to the string of the Msg field.

Figure 44. Connecting the Result of the readMessage Script

 6. Repeat step 5 to connect:

• The result of readName to the name field on the second GUI window

• The result of readMessage to the msg field on the second GUI window
(see Figure 45 on page 42).

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 41

Figure 45. Connecting the Result of the readName and readMessage Methods

 7. Before testing the application you need to connect the shortSessionId of the
3270 Screen to the shortSessionId of the 3270 Terminal.

You will receive a message like that shown in Figure 46. You can ignore the
message.

Figure 46. Message When Connecting shortSessionIds

The direction of this connection is important. The connection must be from
3270 Screen to 3270 Terminal or you will receive an error when testing the
application.

Figure 47 on page 43 shows the connection for the first 3270 Terminal.

42 Building GUIs

Figure 47. Connecting shortSessionId of 3270 Screen to 3270 Terminal

 8. Repeat step 7 for 3270 Terminal1. Connect the shortSessionId of the 3270
Screen Part to the shortSessionId of the 3270 Terminal1.

 9. Finally:

• Connect the End push button (#clicked) to the 3270 Screen (#pressPF:).

• Double-click on the dashed (---->) line, select Set Parameter, and enter
3. You must press PF3 to end the application.

• Connect the End push button (#clicked) to the first window
(#closeWidget).

Figure 48 shows all connections and the application ready to be executed.

Figure 48. All Connections: Abt3270 Screen and Abt3270 Terminal Parts

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 43

3.3.2.4 Advantages and Disadvantages of This Approach
 Advantages

• Good response time. We could specify a Screen Settle Time of 0 seconds
and execute the findString action each time a screenChanged event was
raised. This approach can create additional processing overhead,
however (see Disadvantages).

• Easy identification for input and output fields on the host screens. We
created Smalltalk methods that use the physical field location on the host
screen (row and column) rather than field names.

This advantage disappears when using the tool we created during our
residency project. See Appendix A, “Screen Field Monitor Tool” on
page 213 for details of this tool.

 Disadvantages

• The host session must be active at development and run time when using
the Abt3270Screen part. For example, if a developer specifies session G
in the settings for the Abt3270Screen part, the G session always must be
started when the Composition Editor for the part containing the
Abt3270Screen part is started and when the packaged application is
executing.

• Poor execution performance (test and run time) compared to other
implementations because the screenChanged event is raised multiple
times, and each time it is raised, the findString action is executed.

3.4 Implementing a GUI with PWS Control
Implementing a GUI with PWS control can be achieved in several ways. We
investigated and implemented the following two approaches for our simple
application:

• Use the Abt3270Terminal part and no VisualAge scripts.

• Use the Abt3270Terminal part and VisualAge scripts.

In the sections that follow we explain how we implemented the GUI front end for
our simple application having control at the PWS. To simplify the examples we
assume that the host 3270 screen already shows Map1.

3.4.1 Entering Host Commands with the Abt3270Terminal Part
You have a number of methods for entering a host command with the
Abt3270Terminal part. We investigated the available methods and found some
interesting situations that you may encounter.

The Abt3270Terminal part provides the following methods for entering host
commands:

• enterCommand:

• enterCommandLine:

• enter: andWaitForCursorPositionToChangeFrom:

• enter: andWaitForCursorPositionToChangeTo:.

44 Building GUIs

Please note that the last three methods in the list are not part of the public
interface of the Abt3270Terminal part. We do not discuss the last method
because we did not need to use it.

3.4.1.1 enterCommand:
First we tried to use the enterCommand: method to enter host commands
through our simple application, but this method did not work for the first host
screen (Map1) .

The enterCommand: method sends the input data from the GUI window to the
host and waits for a change in the 3270 host screen. Figure 49 shows the code
for the method.

enterCommand: aString
″Type the specified string, press Home, then press Enter and wait for
 the cursor to be moved from the Home position.″

| cursorPos |
self
type: aString;
keyHome.

cursorPos := self cursorPosition.
^ self

keyEnter;
waitFor: [self cursorPosition ∼ = cursorPos].

Figure 49. Method: enterCommand:

Because our host Map1 had only one unprotected field, the cursor was always
positioned at the unprotected field (home position) and never moved away from
it; therefore, our application waited indefinitely, and, when we tested our
application, we received the error message shown in Figure 50.

Figure 50. VisualAge Error Message

We easily could have “fixed” that problem by eliminating the keyHome command
from the enterCommand: method, but we could not determine all of the
implications that such a change would have in the other methods and therefore
decided not to use this method.

 Conclusion:

The enterCommand: method can be used only for host maps that contain
more than one unprotected field.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 45

3.4.1.2 enterCommandLine:
The enterCommandLine: method did not work for the second host screen (Map2) .
Please note that this method is not part of the Abt3270Terminal part′s public
interface, but it easily can be added.

The enterCommandLine: method sends the input data from the GUI window to
the host and waits for a change in the 3270 host screen. Figure 51 shows the
code for the method.

enterCommandLine: aString
″Type the specified string, then press Enter and wait for
 the cursor to be moved from the upper left-hand corner.″

^ self enter: aString andWaitForCursorPositionToChangeFrom: (1 @ 1).

Figure 51. Method: enterCommandLine:

When we tested our application we received the data from host Map1 in the first
GUI window, but not in the second GUI window.

Because our host Map2 had no unprotected fields, the cursor was always
positioned at the upper left-hand corner (position 1 @ 1) and never moved away
from that position; that is, our application waited forever, and we received the
error message shown in Figure 50 on page 45.

 Conclusion:

The enterCommandLine: method can be used only for host maps that have
at least one unprotected field.

3.4.1.3 enter: andWaitForCursorPositionToChangeFrom:
The enter: aStringandWaitForCursorPositionToChangeFrom: aPoint method
proved to be the best choice for us and we used it to implement a GUI with PWS
control and for the sample application we implemented later. Please note that
this method is not part of the Abt3270Terminal part′s public interface, but it
easily can be added. Figure 52 shows the code for the method.

enter: aString andWaitForCursorPositionToChangeFrom: aPoint
″Type the specified string, position the cursor at aPoint,
 then press Enter and wait for the cursor to be repositioned.″
^ self

type: aString;
cursorPosition: aPoint;
keyEnter;
waitFor: [self cursorPosition ∼ = aPoint].

Figure 52. Method: enter: andWaitForCursorPositionToChangeFrom:

The only problem with this method was that we needed to pass the cursor
position (aPoint) as a parameter and this added more parts to the free form
surface for situations where we did not want to use VisualAge scripts.

This method worked in all situations we encountered during our project because
we could move the cursor to column 80 row 24, and we did not encounter an

46 Building GUIs

application where the cursor was still at that position after the application
activated the Enter key.

3.4.2 Abt3270Terminal Parts Only and No Scripts
In this section we describe how we used Abt3270Terminal parts only and no
VisualAge scripts to implement PWS control for a VisualAge EHLLAPI
application. Figure 53 shows the model we implemented. Note that we used
two Abt3270Terminal parts.

Figure 53. Sequence of Events and Actions with PWS Control

The sequence of events and actions is as follows:

 1. The user clicks on the Execute push button to have the
enter:andWaitForCursorPositionToChangeFrom: method send the input data
to the host, move the cursor to position (80,24), and wait for the cursor to
move from that position.

 2. The host application executes the Enter key, and either MAP1 or MAP2 is
shown:

• If the user entered an invalid ID, a message is shown in MAP1.

• If the user entered a valid ID, MAP2 is shown at the host.

 3. The findString action is executed after the host screen is refreshed (cursor
moved from position 80 x 24 to home) and looks for Map1. As a result of this
action either the searchSuccessful or searchFailed event is raised.

 4. This step depends on which host screen is shown:

• If the first host screen (Map1) is shown, the searchSuccessful event
triggers the stringAt:1@5for:72 method, which moves the message data
to the first GUI window.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 47

• If the second host screen (Map2) is shown, the searchFailed event
triggers the findString action that looks for Map2.

 5. The searchSuccessful event for Map2 triggers the openWidget action to open
the second GUI window.

 6. The searchSuccessful event for Map2 also triggers the stringAt:1@5for:72
action to move the host message data to the second GUI window.

 7. The searchSuccessful event for Map2 also triggers the stringAt:14@3for:16
action to move the contents of the host name field to the second GUI
window.

 8. The user clicks on the Return push button, which executes the closeWidget
action, and the second GUI window is closed.

 9. Clicking on the Return push button also triggers the pressEnter action for
MAP2.

10. The host application executes the Enter key.

11. The user clicks on the End push button, and the pressPF:3 action is sent to
the host.

12. The End push button triggers the closeWidget action to close the first GUI
window.

3.4.2.1 Coding the Application
As already mentioned, the enter:andWaitForCursorPositionToChangeFrom:
method is not in the public interface of the Abt3270Terminal part. We suggest
that this method be available for all developers through the public interface if
you plan to use the VisualAge EHLLAPI support.

Perform the following steps to add a method to the public interface of a part:

 1. Go to the Composition Editor, add an Abt3270Terminal part to the free form
surface, select it, and click mouse button 2. In Open Settings select Edit Part
as shown in Figure 54 on page 49.

48 Building GUIs

Figure 54. Editing the Abt3270Terminal Part

 2. The Script Editor for the Abt3270Terminal part is shown (see Figure 55).
Select the icon to open the public interface editor.

Figure 55. Abt3270Terminal Part Script Editor

 3. To add an action to the public interface follow these steps:

a. Select the Action tab of the public interface editor notebook.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 49

b. Select the method you want to add to the public interface, in this case,
enter:andWaitForCursorPositionToChangeFrom:, from the Action selector
drop-down list.

 c. Type the action name in the Action name field. We suggest you use the
method name. Use the Ct r l+ Inser t keys to copy the method name to the
OS/2 clipboard and the Shif t+Insert keys to paste it to the Action name
field.

d. Click on the Add with defaults button (see Figure 56).

After saving the part, the newly added action is available for visual
connections.

Figure 56. Adding an Action to the Public Interface

 4. Add another Abt3270Terminal part to the free form surface as this example
requires two Abt3270Terminal parts. You can use the Copy/Paste function of
the Composition Editor.

Because we wanted to implement this example without Smalltalk scripts, we had
to add parts (objects) to the free form surface that we could use as parameters
for the actions we used.

The enter:andWaitForCursorPositionToChangeFrom: method required two
parameters, one string and one point object. Therefore, we had to add a Point
part to the free form surface by selecting Options from the action bar and then
Add Part and entering Point for the Class name. We could then provide values
for the x and y coordinates of the Point object.

When we used methods that required a Point object as a parameter, we
connected the self attribute of the Point object to the incomplete action
connection.

We had to create the Point on the free form surface as a part and then connect
the x and y values. We could not create the Point as a variable, because the

50 Building GUIs

Point class is complex (it has x and y as instance variables) and must be
initialized (new) before it can be used. This initialization is done automatically
for added parts only. If we added the Point as a variable, it would not be
initialized (new), and we would not be able to connect the values (80,24) to x and
y. Figure 57 shows how to add a Point part.

Figure 57. Adding a Point Part

Figure 58 on page 52 shows the Point part on the free form surface with the
connections to the x and y values. Note that the values must be integer objects,
and the connection must connect the object to x or y.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 51

Figure 58. Initializing a Point with Values

3.4.2.2 Connections for the First Abt3270Terminal Part
The sequence in which you define the connections corresponds to the execution
sequence of the application. Be sure to make the connections in the correct
sequence. Make the following visual connections:

 1. Connect the Execute push button (#clicked) to the 3270 Terminal (#enter:
aString andWaitForCursorPositionToChangeFrom:).
This connection is incomplete, and you need to provide the ID to be sent to
the host (aString) and the cursor position (aPoint) as parameters.

 2. Connect Text (#string) to the incomplete connection (#aString).

 3. Connect Pos24x80 (#self) to the incomplete connection (#aPoint).
The connection is now complete and changes from a dashed line to a solid
line. Figure 59 shows the connections.

Figure 59. Connecting aString and aPoint

52 Building GUIs

 4. When you click on the Execute push button, the host shows either Map1 or
Map2, depending on the input you provided. To find out which host screen is
shown, connect the push button to the 3270 Terminal.

Connect the Execute push button (#clicked) to the 3270 Terminal
(#findString:).

Pass as a parameter the string to be found (VA10M01) by connecting the
labelString to the connection (#aString) (see Figure 60).

Figure 60. Connecting findString

 5. If Map1 is found, you need to get the contents of the message field on the
host screen.

Connect the 3270 Terminal (#searchSuccessful) to the 3270 Terminal
(#stringAt:for:).

Pass as parameters the position of the host screen message field (1 @ 5)
and its length (72).

You need to add a Point part. You can use the Copy/Paste function of the
Composition Editor for that purpose. Figure 61 shows the connection.

Figure 61. Connecting the 3270 Terminal to Itself

 6. You need to connect the data read from the host screen to the message field
of the first GUI window.

Connect the result of the previously added connection (3270 Terminal to 3270
Terminal) to the Msg field (#string).

 7. Now add a label with the session ID (B) and connect it (#labelString) to the
shortSessionID of the 3270 Terminal. This connection results in a warning
message, which you can ignore.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 53

Figure 62 shows all connections for the first Abt3270Terminal part. You are
now ready to test the application with an invalid ID as input.

Figure 62. All Connections for the First Abt3270Terminal Part

3.4.2.3 Connections for the Second Abt3270Terminal Part
To connect the second Abt3270Terminal part, make the following connections:

 1. Connect 3270 Terminal (#searchFailed) to 3270 Terminal1 (#findString).

 2. Connect 3270 Terminal1 (#searchSuccessful) to Window1 (#openWidget).

 3. Connect 3270 Terminal1 (#searchSuccessful) to 3270 Terminal1
(#stringAt: for:).

This connection will retrieve the name field from Map2. Pass as parameters
the position of the host screen name field (14 @ 3) and its length (16).

 4. Connect the result of the previous connection to the Name field in the second
GUI window.

 5. Connect 3270 Terminal1 (#searchSuccessful) to 3270 Terminal1
(#stringAt: for:).

This connection will retrieve the message field from Map2. Pass as
parameters the position of the host screen message field (1 @ 5) and its
length (72).

Note: You could use the same Point object that you used for the first 3270
Terminal, but we suggest you create a separate Point object to make
the visual coding easier to understand.

 6. Connect the result of the previous connection to the Msg field in the second
GUI window.

 7. Connect the Return push button (#clicked) to 3270 Terminal1 (#keyEnter).

 8. Connect the Return push button (#clicked) to Window1 (#closeWidget).

 9. Connect the End push button (#clicked) to 3270 Terminal (#keyPF:3).

10. Connect the End push button (#clicked) to Window (#closeWidget).

Figure 63 on page 55 shows all connections.

54 Building GUIs

Figure 63. All Connections for Both Abt3270 Terminal Parts

3.4.2.4 Advantages and Disadvantages of This Approach
 Advantages

• Does not require Smalltalk skills; all coding is visual.

• Good response time. Because this approach does not use the
Abt3270Screen part, we avoided the Screen Settle Time delay.

• Easy identification of input and output fields on the host screens. We
created Smalltalk methods that use the physical field location on the host
screen (row and column) rather than field names.

This advantage disappears when using the tool we created during our
residency project. See Appendix A, “Screen Field Monitor Tool” on
page 213 for details of this tool.

• Automatic timeout warning when the host session does not respond.

• No need to have the host session active during development.

 Disadvantages

• Requires checking to find out which host screen is displayed.

When using the Abt3270Screen part, the key string defined for the
Abt3270Screen part is used to validate the active host screen and
prevents the sending or receiving of data from an incorrect host screen.

• All coding is visual, which usually means that there are many
connections, and understanding the code can become difficult.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 55

3.4.3 Abt3270Terminal Part and Scripts
In this section we describe how we used an Abt3270Terminal part and VisualAge
scripts to implement PWS control for the GUI application. We used VisualAge
facilities to generate the scripts whenever possible.

Note that we used one Abt3270Terminal part instead of two because we used
VisualAge scripts instead of the searchSuccessful event. Figure 64 shows the
model we implemented.

Figure 64. Sequence of Events and Actions with PWS Control and Scripts

The sequence of events and actions is as follows:

 1. The user clicks on the Execute button to execute a VisualAge script.

 2. The script executes the enter:andWaitForCursorPositionToChangeFrom:
method to send the input data to the host, move the cursor to position
(80,24), and wait for the cursor to move from that position.

 3. The host application executes the Enter key, and either MAP1 or MAP2 is
shown.

• If the user entered an invalid ID, a message is shown in MAP1.

• If the user entered a valid ID, MAP2 is shown at the host.

 4. The findString action is executed and searches for the string MAP1.

 5. If the string is found (true result), the stringAt:1@5for:72 method moves the
message data to the first GUI window.

 6. If the string is not found (false result), the findString method searches tor the
string MAP2.

 7. If the string is found (true result), the stringAt:14@3for:16 method moves the
name data to the second GUI window.

56 Building GUIs

 8. The stringAt:1@5for:72 method moves the message data to the second GUI
window.

 9. The true result also triggers the openWidget action, which opens the second
GUI window.

10. The user clicks on the Return button, which executes the closeWidget action,
and the second GUI window is closed.

11. Clicking on the Return push button also triggers the pressEnter action for
MAP2.

12. The host application executes the enter key.

13. The user clicks on the End push button, and the pressPF:3 action is sent to
the host.

14. The End push button triggers the closeWidget action to close the first GUI
window.

3.4.3.1 Coding the Application
Using the Composition Editor, drag an Abt3270Terminal part and two variable
parts from the parts palette and drop them on the free form surface as shown in
Figure 65.

Figure 65. Abt3270Terminal Part and Variable Parts

When you access VisualAge parts from Smalltalk code or use the VisualAge
Script Editor to generate Smalltalk code, you could find it difficult to distinguish
different parts in the same category. The part names VisualAge generates differ
only in sequence number, and you should provide your own part names for easy
identification. We changed the part names as suggested in 4.1.2, “Naming
Convention for Parts” on page 81.

To change the names, select the part you want to rename and click on it with
mouse button 2. Select Change Name... and type the desired name in the dialog
box that shows the default name.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 57

Table 4 shows the naming convention we used.

Table 4. Naming Convention Used for VisualAge Parts

Defau l t Name Changed Name

Canvas Cat egory

Window winMap1

Window1 winMap2

But tons Category

Push Button (Window) pbExecute

Push Button1 (Window) pbEnd

Push Button2 (Window1) pbReturn

Data Entry Category

Text (ID - Window) efID

Text1 (Msg - Window) efMsg1

Text2 (Name - Window1) efName

Text2 (Msg - Window1) efMsg2

Models Var iab le Category

Object message1

Object1 name

Object2 message2

3.4.3.2 Writing the Script
The Smalltalk method (script) that provides the functions behind the Execute
push button should do the following:

• Assign the host session ID to the Abt3270Terminal part.

• Send the input data to the host and wait for the host screen to change.

• Find out which host screen is displayed.

• Move the host data to the appropriate GUI window fields.

We used the VisualAge Script Editor to write the method and named it enterID:.
The enterID: method expects the input data for the host as a parameter.

Using the Script Editor, create a new method by selecting Methods and New
Method Templates from the action bar. Define two temporary variables where
data sent to and received from the host will be stored (aMessageString and
aNameString). Figure 66 shows the Script Editor.

Figure 66. Creating the enterID: Method

58 Building GUIs

To assign the host session ID to the Abt3270Terminal part, perform the following
operations using the Script Editor:

 1. Click on the Attributes icon, select 3270 Terminal from the subparts list and
shortSessionId from the attributes list, and click on the Paste ′set′ push
button (see Figure 67).

Figure 67. Using Script Editor to Generate Code

Be sure the cursor in the edit pane is positioned where you want the code to
be pasted. Figure 68 shows the result of the Paste ′set′ operation.

Figure 68. Code Generated by the Script Editor: Attribute

 2. Replace < y o u r expression h e r e > with the host session ID. We used the G
session in our example ($G).

We used the enter:aString andWaitForCursorPositionToChangeFrom: method,
which we added to the &TP′s public interface, to send the input data to the host.

To generate the Smalltalk code perform the following operations using the Script
Editor:

 1. Click on the Action icon, select 3270 Terminal from the subparts list and
enter:aString andWaitForCursorPositionToChangeFrom: from the actions list,
and press the Paste push button (see Figure 69 on page 60).

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 59

Figure 69. Using Script Editor to Generate Action Code

Be sure the cursor in the edit pane is positioned where you want the code to
be pasted. Figure 70 shows the result of the Paste operation.

Figure 70. Code Generated by the Script Editor: Action

 2. Replace <aSt r ing (Ob jec t)> with: <aPo in t (Ob jec t)> with idString with:
15@3. This represents column 15 row 3 on the host screen, which is where
the input data must be entered before the enter key is pressed.

After the input data is sent to the host you need to find out which host screen is
displayed. We used the findString: action to identify the host screen.

Generate the Smalltalk code as described in the previous step. Figure 71 on
page 61 shows the generated Smalltalk code.

Replace the <aSt r ing (S t r i ng)> with
′VA10M01 HOST APPLICATION - First Map′
to uniquely identify the host screen.

60 Building GUIs

Figure 71. Code Generated by the Script Editor: Action findString:

Now you must generate the code that implements the logic. That logic depends
on whether the user entered a valid or invalid ID and therefore on which host
screen is displayed. If you are not familiar with Smalltalk, you can use the Script
Editor language elements dialog (third icon from the top on the left).

For example, to generate the ifTrue statement select Control Statements from the
Categories list and ifTrue from the Language elements list as shown in
Figure 72.

Figure 72. Generating ifTrue Statement

Use the Paste statement push button to paste the language element to the edit
pane (see Figure 73 on page 62).

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 61

Figure 73. Generated ifTrue Statement

Replace the <your Boolean expression here> text with the code block that tests
for the host screen. Figure 74 shows the modified code.

Figure 74. Modified ifTrue Statement

Now you must generate the code that moves the data from the host screen to
the first GUI window. Perform the following steps to generate the Smalltalk
code:

62 Building GUIs

 1. Use the aMessageString Smalltalk variable to store the message data. Type
aMessageString := between the brackets as shown in Figure 75.

Figure 75. Using the Script Editor to Generate Code: Assigning a Value to Variable

 2. Paste the stringAt:for: action as you did for the other actions. Figure 76
shows the result of the Paste operation.

Figure 76. Using the Script Editor to Generate Code: Pasting Action

Replace <aPoint (Point)> wi th: <aLength (In teger)>

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 63

with 1@5 with: 72, the location and size of the message field on the host
screen.

 3. As part of the same if block ([]) you should set the message1 variable on
the free form surface to the contents of the aMessageString Smalltalk
variable.

You can use the Script Editor to generate the required code as shown in
Figure 77.

Figure 77. Using the Script Editor to Generate Code: Pasting Set message1

 4. Replace the < y o u r expression h e r e > text with aMessageString.

Figure 78 shows the complete ifTrue block.

ifTrue:
[aMessageString :=
(self subpartNamed:
#′3270 Terminal′) performActionNamed:
#stringAt:for:
withArguments:
(Array with: 1@5 with: 72).
self partAttributeValue: #(#message1 #self) put:
aMessageString.
].

Figure 78. Generated ifTrue Block

 5. You can generate an ifFalse block to handle the situation when the second
host screen (Map2) is displayed. The steps to generate that code are similar
to the steps to handle the first host screen (Map1) and are not repeated
here. The difference is that you need to open the second GUI window when
you find Map2. The required code can be generated using the Script Editor.
Figure 79 on page 65 shows the complete Smalltalk method.

64 Building GUIs

enterID: idString
″This method will be executed when Execute is pressed.

1.Assign the host session ID to the Abt3270Terminal part
2.Send ID to host session and wait for screen to be changed
3.Find which host Map is displayed
If Map1 move the message to first window
if Map2 move name and message to second window. ″

| aMessageString aNameString|
 self partAttributeValue:
#(#′3270 Terminal′ #shortSessionID) put: $G.

(self subpartNamed: #′3270 Terminal′) performActionNamed:
#enter:andWaitForCursorPositionToChangeFrom:
withArguments:
(Array with: idString with: 15@3).

 ((self subpartNamed: #′3270 Terminal′) performActionNamed:
#findString:
with:

′ VA10M01 HOST APPLICATION - First Map′)

ifTrue:
 [
aMessageString := (self subpartNamed: #′3270 Terminal′)
performActionNamed: #stringAt:for:

withArguments: (Array with: 1@5 with: 72).
self partAttributeValue: #(#message1 #self) put: aMessageString.

]
 ifFalse:
 [
((self subpartNamed: #′3270 Terminal′) performActionNamed:
#findString:
with: ′ VA10M02 HOST APPLICATION - Second map′)
ifTrue:
[
(self subpartNamed: #WinMap2) performActionNamed: #openOwnedWidget.
aNameString := (self subpartNamed: #′3270 Terminal′)
performActionNamed: #stringAt:for:
withArguments: (Array with: 14@3 with: 16).

self partAttributeValue: #(#name #self) put: aNameString.

aMessageString := (self subpartNamed: #′3270 Terminal′)
performActionNamed: #stringAt:for:
withArguments: (Array with: 1@5 with: 72).

self partAttributeValue: #(#message2 #self) put: aMessageString.
]

].

Figure 79. Generated Smalltalk Method

3.4.3.3 Making the Connections
You have to make the following visual connections to finish the application:

 1. Use an event-to-script connection to hook the enterID: method to the Execute
push button and then pass the input data from the Enter ID field to that
event-to-script connection as a parameter.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 65

 2. After the enterID: method has executed, the data from the host screen is
stored in the variables defined on the free form surface. Connect the
variables to the appropriate fields in the GUI windows.
Figure 80 shows the first group of visual connections.

Figure 80. Making the Visual Connections

 3. Connect the Return push button (#clicked) to 3270 Terminal1 (#keyEnter).

 4. Connect the Return push button (#clicked) to winMap2 (#closeWidget).

 5. Connect the End push button (#clicked) to 3270 Terminal(#keyPF:3).

 6. Connect the End push button (#clicked) to winMap1 (#closeWidget).

Figure 81 on page 67 shows all visual connections.

66 Building GUIs

Figure 81. All Connections for this Approach

3.4.3.4 Optimizing the Generated Code
As you would expect, the Smalltalk code that the VisualAge Script Editor
generates is not as effective and optimized as code that an experienced
Smalltalk programmer would write. You may want to optimize the generated
code for better performance and/or readability.

We modified the generated code for the enterID: method to make it easier to
read and understand. Figure 82 on page 68 shows the two Smalltalk methods
that provide the same result. The left-hand part of the figure shows the
Smalltalk code that the Script Editor generates, and the right-hand part shows
our modified (optimized) statements.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 67

Figure 82. Smalltalk Methods: Generated and Optimized

3.4.3.5 Advantages and Disadvantages of This Approach
 Advantages

• Good response time. Because this approach does not use the
Abt3270Screen part, we avoided the Screen Settle Time delay.

• Better performance than the previous approaches because most of the
code is implemented with Smalltalk methods without using the visual
connections.

• Easy identification of input and output fields on the host screens. We
created Smalltalk methods that use the physical field location on the host
screen (row and column) rather than field names.

This advantage disappears when using the tool we created during our
residency project. See Appendix A, “Screen Field Monitor Tool” on
page 213 for details of this tool.

• Automatic timeout warning when the host session does not respond.

• No need to have the host session active during development.

68 Building GUIs

 Disadvantages

• Requires more Smalltalk skills than the approach with no scripts (see
3.4.2.), although we used the VisualAge generation function that creates
the Smalltalk code.

• Requires checking to find out which host screen is displayed.

When using the Abt3270Screen part, the key string defined for that part is
used to validate the active host screen and prevents the sending or
receiving of data from an incorrect host screen.

3.5 Isolating the Communication Services
In the approaches described so far we assumed that the communication protocol
would always be EHLLAPI and that it would not change over the lifetime of the
GUI application. If we had decided to implement another VisualAge
communication service, such as APPC or CICS OS/2, for our application, we
would have had to change our application dramatically.

In this section we describe an implementation where the communication
services are encapsulated in an independent part of the application. Should the
communication services ever change, only that part of the application would be
affected.

We modified the approach explained in 3.4.3, “Abt3270Terminal Part and Scripts”
on page 56 for the GUI application described in this section. Figure 83 shows
the model we implemented.

Figure 83. Isolating the Communication Services

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 69

The sequence of events is as follows:

 1. The user clicks on the Execute push button to execute the
searchCustomerWithID method. The field ID is the parameter for this
method. Note that this method belongs to a nonvisual part and is available
through its public interface.

 2. The searchCustomerWithID method uses the
enter:andWaitForCursorPositionToChangeFrom: method to send the input
data to the host, move the cursor to position (80,24), and wait for the cursor
to move from that position.

 3. The host application executes the Enter key, and either MAP1 or MAP2 is
shown.

• If the user entered an invalid ID, a message is shown in MAP1.

• If the user entered a valid ID, MAP2 is shown at the host.

 4. The findString action is executed and searches for the string MAP1.

 5. If Map1 is shown, the messageField attribute from the Communication Model
Part contains the message data to be sent to first GUI window.

 6. If Map2 is shown, the messageField attribute and nameField from the
Communication Model Part contain the message and name data to be sent
to second GUI window.

 7. In addition, if Map2 is found, the IDFound event is signaled, and the
openWidget action opens the second GUI window.

 8. The user clicks on the Return push button to execute the closeWidget action,
and the second GUI window is closed.

 9. Clicking on Return also triggers the pressEnter action for MAP2 through the
Communication Model Part.

10. The host application executes the Enter key.

11. The user clicks on the End push button to send the pressPF:3 action to the
host through the Communication Model Part.

12. The End push button triggers the closeWidget action to close the first GUI
window.

3.5.1 Coding the Application
We created a visual and a nonvisual part to implement the GUI application.

The visual part provided the two GUI windows as described in the previous
approaches, and we do not repeat the detailed steps to create that part in this
section.

The nonvisual part was used to encapsulate the VisualAge communication
services; EHLLAPI in this case.

3.5.1.1 Creating the Nonvisual Abt3270Terminal Part
Create a nonvisual part and add the Abt3270Terminal part to the free form
surface as shown in Figure 84 on page 71. You may want to change the
Abt3270Terminal part′s name to something like Communication Services.

70 Building GUIs

Figure 84. Composition Editor with Abt3270Terminal Part

3.5.1.2 Generating Scripts for the Attributes
Because we needed access to the attributes (instance variables) of the nonvisual
part from the methods we wrote, we had to generate, using the public interface
editor, the default scripts to access the attributes.

Note: We could have accessed the part attributes directly from within our
methods, but using the generated default scripts ensures that all required
events are properly defined and raised.

Our nonvisual part had the following attributes:

• messageField

• nameField.

To add the messageField attribute to the public interface and generate the
default scripts, perform these steps:

 1. Switch to the public interface editor.

 2. Select the Attribute tab.

 3. Type messageField in the Attribute name field.

 4. Click on the Add with defaults push button.

 5. Select File and Generate Default Scripts... from the action bar.

 6. Select messageField from the Instance variables list (see Figure 85 on
page 72).

 7. Click on the Generate all push button to perform the generation.

 8. Repeat steps 1 through 7 for the nameField attribute.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 71

Figure 85. Generating the Default Scripts

The previous steps added the attributes and default scripts as instance variables
and methods to the Smalltalk class that implemented our nonvisual part.
Figure 86 shows the instance variables and generated methods for the
ItscVa10aHllapiModel class.

Figure 86. Instance Variables and Generated Methods

The two instance variables in the generated class had to be initialized to avoid
problems at run time. Smalltalk initializes instance variables with nil by default,
which usually results in a ni l does not understand <message> debugger
message at run time.

We used the generated get selector methods to provide a “lazy initialization” for
the two instance variables. Figure 87 shows the generated get selector method
for the messageField.

messageField
″Return the value of messageField.″
^messageField

Figure 87. Generated Get Selector Method for messageField

72 Building GUIs

Figure 88 shows the get selector method for the messageField with the “lazy
initialization” code added.

messageField
″Return the value of messageField.″
 (messageField isNil) ifTrue:

[self messageField: ′ ′].
^messageField

Figure 88. Modified Get Selector Method for messageField

Note that the initialization technique used the generated get selector method to
set the instance variable to an empty string.

3.5.1.3 Writing the searchCustomerWithID Method
The Smalltalk method we wrote was very similar to the method described in
3.4.3.4, “Optimizing the Generated Code” on page 67, and you should consult
the referenced section for details. Figure 89 shows the searchCustomerWithID:
method.

Figure 89. Method: searchCustomerWithID:

3.5.1.4 Creating the Public Interface
To finish our nonvisual part and make it a real VisualAge part as opposed to a
Smalltalk class, we had to create a public interface for it. We used the public
interface to plug our nonvisual part into the other part of the application, the
visual (windows) part.

Figure 90 on page 74 illustrates the relationship between the public interface of
our nonvisual part and the Smalltalk class interface.

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 73

Figure 90. VisualAge Public Interface and Smalltalk Class Interface

The messageField and nameField attributes already had been added to the public
interface in an earlier step (see 3.5.1.2, “Generating Scripts for the Attributes” on
page 71). So, what we had to add here were the actions and events.

To add the required actions and events to the public interface, perform these
steps:

 1. Switch to the public interface editor.

 2. Select the Event tab.

 3. Type IDnotFound in the Event name field.

 4. Click on the Add with defaults push button (see Figure 91 on page 75).

74 Building GUIs

Figure 91. Adding the IDnotFound Event to the Public Interface

 5. Repeat steps 1 through 4 for the IDFound event.

 6. Select the Action tab of the notebook.

 7. Select the action to be added from the Action selector drop-down list.

 8. Type the desired action name in the Action name field.

 9. Click on the Add with defaults push button (see Figure 92).

Figure 92. Adding the searchCustomerWithID Action to the Public Interface

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 75

At this point, the Communication Services part is ready for use.

3.5.1.5 Making the Connections
We now had to connect the GUI windows to the Communication Services part.
Figure 93 shows how to add the Communication Services part to the free form
surface.

Figure 93. Adding the Nonvisual Part to the Free Form Surface

Make the visual connections as follows:

 1. Connect the Execute push button (#clicked) to Communication Services
(#searchCustomerWithID:).
This connection is incomplete, and you need to provide the ID to be sent to
the host as a parameter.

 2. Connect the entry field ID (#string) to the incomplete connection (#idString).

 3. Connect Communication Services (#messageField) to efMsg1(#string).

 4. Connect Communication Services (#IDFound) to WinMap2(#openWidget).

 5. Connect Communication Services (#messageField) to efMsg2(#string).

 6. Connect Communication Services (#nameField) to efName(#string).

 7. Connect the Return push button (#clicked) to WinMap2(#closeWidget).

 8. Connect the End push button (#clicked) to Communication
Services(#keyPF:3).

 9. Connect the End push button (#clicked) to winMap1(#closeWidget).

Figure 94 on page 77 shows all of the connections.

76 Building GUIs

Figure 94. All Connections for this Approach

 Conclusion

This is the best approach for our simple application, and it is the
recommended implementation approach for real customer applications.

The parts are reuseable and can be used and shared across the installation.
The communication services are encapsulated to make maintenance easier.
In our example, if the communication services change from EHLLAPI to
APPC, CICS OS/2, or any other interface, only the Communication Services
part is affected.

3.6 Analyzing the Size of Each Implementation
We analyzed the five implementations for the same GUI application to get an
idea of the size of the generated Smalltalk code, which affects the performance
of the application. Table 5 shows the results of our analysis.

Table 5. Application Sizes

Description Size in
Bytes of
File-Out

ItscVa10aView - Host Control - Example 1 24,152

ItscVa10aHostControlEx2View - Host Control - Example 2 27,068

ItscVa10aPwsControlExe3View - PWS Control - Example 3 45,033

ItscVa10aPwsControlExe4View - PWS Control - Example 4 21,593

ItscVa10aHllapiModel - HLLAPI part
+

ItscVa10aPwsControlFinalView - PWS Control - Example 5

3,939
+

19,088

Chapter 3. Applying the VisualAge EHLLAPI Parts with a Simple Example 77

 Conclusions

Example 4, explained in 3.4.3, “Abt3270Terminal Part and Scripts” on
page 56, generates the least amount of Smalltalk code and will probably
yield the best performance.

Example 3, explained in 3.4.2, “Abt3270Terminal Parts Only and No Scripts”
on page 47, generates the largest amount of Smalltalk code because the
whole example is coded visually. Example 3 will probably use the most
resources (memory and CPU).

We recommend that you use Smalltalk code if the issue is performance.

78 Building GUIs

Part 2. Implementing the Sample Application

 Copyright IBM Corp. 1994 79

80 Building GUIs

Chapter 4. Design and Implementation Considerations

In this chapter we introduce some general issues and approaches to consider
before you implement a GUI application.

We address the issue of naming conventions, we talk about different approaches
to implementing a GUI for an existing host application, and we discuss the
important model-view separation approach for the GUI application.

The issues and approaches discussed in this chapter are valid for the design
and implementation of any VisualAge project that has to provide a GUI for an
existing application.

4.1 Naming Conventions
When you develop applications with VisualAge you typically create new parts,
and it is important that you agree on a naming convention before you start.
Such agreement will avoid naming conflicts and misunderstandings when you
develop applications in a team.

The naming conventions we used for our project are described in the sections
that follow.

4.1.1 Naming Convention for Applications
The suggested naming convention for applications that is used by the product
itself is described in the VisualAge manual as follows:

• Choose a three-character package prefix to minimize the possibility that
component names in one package or application conflict with component
names in a different application. An application can be equivalent to a
package, or it can be implemented in several packages. The prefix can be
an abbreviation of the project, the developer, or the development team.
VisualAge itself provides parts with the prefix Abt. We used the prefix Its for
our application.

• Use a descriptive name for the application and avoid abbreviations unless
their meaning is clear. For example, we used CspSample for our
application.

• Use the string App as an application suffix.

The complete name for our sample application according to the previously
described naming convention is ItsCspSampleApp.

4.1.2 Naming Convention for Parts
The naming convention for parts should underscore the fact that reuse is
possible only if it is easy to find the things to be reused. With a meaningful
name for a part, the chances of finding the right part as quickly as possible are
improved. Here is the suggested naming convention:

• Choose a three-character package prefix, for example, Its.

• Use the name of the application for parts that are only reusable within the
application, for example, CspSample. Do not use the application name for
application-independent parts.

 Copyright IBM Corp. 1994 81

• Use a meaningful name to describe the part, for example, CustomerList.

• Use a category suffix for visual parts. The suffix View is not meaningful
enough to recognize a candidate for reuse; use such suffixes as Window,
Form, Groupbox. Nonvisual parts have no suffix at all.

Sample part names from our application are ItsCspSampleMainWindow and
ItsCspSampleCustomerNumberForm.

4.1.3 Naming Convention for Category Parts
Whenever you add parts from the palette (so-called category parts) to the
Composition Editor, VisualAge generates a name with a sequence number for
the part. For example, the primary window in the Composition Editor is named
Window. When adding a second window part, this new part is named Window1.

These generated names can be difficult to use, especially when writing scripts
that need access to the parts in the Composition Editor. You may have a
considerable number of parts from the same category, such as push buttons or
data entry fields, in your Composition Editor, and it is not easy to distinguish
those parts using the generated names.

We suggest that you use names like pbXxxxx, where Xxxxx provides a
description of the part′s use. For example, the Help push button is named
pbHelp. In the case of push buttons it is a good idea to use the text written on
the button for Xxxxx. Table 6 shows the suggested names.

Table 6 (Page 1 of 2). Suggested Naming Convention for Category Parts

Category Part VisualAge Default Suggested Name

Button Categories

Push button Push Buttonx pbXxxxx

Radio button Radio Button Setx rbXxxxx

Toggle button Toggle Buttonx tbXxxxx

Scale Scalex scXxxxx

Data Entry Categories

Text Textx efXxxxx

Multiline edit Multi- l ine Editx mleXxxxx

Table Tablex taXxxxx

Label Labelx laXxxxx

List Categories

List Listx l iXxxxx

Multiple select list Multiple Select Listx mslXxxxx

Drop-down list Drop-down Listx ddlXxxxx

Combo box Combo Boxn cbXxxxx

Menu Categories

Push button Push Buttonx pbXxxxx

Toggle button Toggle Buttonx tbXxxxx

Cascade button Cascade Buttonx caXxxxx

Separator Separatorx seXxxxx

Menu Menux meXxxxx

Canvas Categories

Window Windowx winXxxxx

82 Building GUIs

Table 6 (Page 2 of 2). Suggested Naming Convention for Category Parts

Category Part VisualAge Default Suggested Name

Form Formx foXxxxx

Group box Group Boxn gbXxxxx

Notebook Notebookx noXxxxx

Container Containerx conXxxxx

4.2 Design Models to Map Host Screens to GUI
As described in Part 1, different models exist to implement a GUI for an existing
host application with EHLLAPI. We distinguished four models, each with specific
characteristics for the GUI application. The characteristics that describe those
four models are:

Control Control to trigger the GUI application can be on the host or the
PWS side. Control here means which application triggers the
next step, for example, to open a window or to change the
screen.

Flow control The application flow can be driven by the user or by the
application itself. Application driven means that the actual
application function provides a restricted number of choices to
the user to go further in the application. User driven means
that the user can select any application function and jump
between different functions without the need to follow a strict
sequence of application functions.

Mapping Mapping addresses the relationship of the GUI windows to the
host screens. Either each host screen is transformed (1:1) to a
separate GUI window or a GUI window represents many (1:m)
host screens.

Instances Instances reflect the style of the GUI application in terms of
window instantiation. Single instance means that each type of
window can be opened once in the application. Multiple
instance means that it is possible to have more than one
window of the same type opened concurrently.

Figure 95 on page 84 depicts the four identified models.

Chapter 4. Design and Implementation Considerations 83

Figure 95. Four Design Models for GUI to Host Mapping

Implementation complexity and flexibility in user interaction grow from model 1
to model 4. That is, model 1 is the easiest model to implement but also the most
limited model in terms of user interaction. Model 4 is the most complex to
implement but also the most flexible and powerful model for the user.

4.2.1 Design Model 1
In model 1 the master is the host application and the GUI application is the slave
that reacts to the actions of the host application. The Abt3270Screen part is
used to implement this approach. The process is triggered by the
screenChanged event.

This design model assumes that the GUI window and the host map are
synchronized at any given time. The host map that is transformed 1:1 into a GUI
window is always present on the host session. This approach is limited because
only one GUI window can be opened at any given time. Whenever the
application flow moves on, the actual window must be closed before the next
window can be opened.

Model 1 provides a modal GUI application where the user has no flexibility and
derives little benefit from the window interface. The user cannot see more
information than that provided by a single host map in a single GUI window.
This model does not allow multiple window instances.

A general rule for the implementation of GUI applications is to avoid modality in
window behavior as much as possible. Therefore, we do not recommend model
1.

4.2.2 Design Model 2
Model 2 is host application driven as is model 1. The difference is that the GUI
application triggers the next step in the host application. Also, a window can
trigger a sequence of host screens to be run and the GUI application knows
about the sequence. The restriction is that after a sequence of host screens, the
window and the host screen are synchronized again. It is only possible to start
a sequence of host screens that the host application flow allows.

84 Building GUIs

Model 2 provides a modal GUI application where a window has to be closed
before another window can be opened because the map behind the window
remains open and waits for the next input. With this approach it is not possible
to have multiple instances of a window.

Because of its modality, the GUI application still provides limited flexibility to the
user, and we do not recommend model 2 if it is possible to select model 3 or
model 4.

4.2.3 Design Model 3
The difference between models 1 and 2 and this model (and model 4) is the
synchronization between the host screen and the window. In this model, it is
possible to start every host function from the same point, the point we call single
point of control (SPOC). The host screen does not have to remain open as long
as a window is open. Instead it is possible to have multiple different windows
open concurrently, for example, a customer detail window of one customer and a
customer order window of another customer.

We recommend model 3 (or model 4) whenever possible as the implementation
model for an EHLLAPI application because it provides a nonmodal PWS
application where the user has control over the application flow.

4.2.4 Design Model 4
Model 4 differs from model 3 in that it allows you to create more than one
window of the same type as multiple instances. For example, it is possible to
have more than one customer detail window with different customers open
concurrently.

This model is just a little bit more difficult to implement than model 3.

4.3 Design of Model-View Separation
A common application segmentation model in the client/server environment
divides an application into three components (see Figure 1 on page 3):

• Presentation

• Function

• Data.

The presentation component defines how the user and the system interact. This
segment is responsible for presenting information to the user and accepting
input from the user on behalf of the business logic. Because it does not
implement any of the business logic, it can be updated or completely replaced
without affecting the business logic. We refer to this user interface function as a
view .

The function component implements the real-world objects of the application,
such as a customer, a calendar, or a contract. It defines the behaviors of these
objects and their interrelationships without consideration for how they are
presented to users or how users interact with them. The design of the objects
with their behavior and interrelationships is called the object model. We refer to
the implementation of the real-world objects as a model .

Chapter 4. Design and Implementation Considerations 85

We do not discuss the data component because, from the application builder ′s
perspective, it can be thought of simply as an extension of the model.

With the model-view separation approach, we distinguish between model objects
and view objects. Segmenting an application this way provides several benefits:

• It enables prototyping and parallel development. Prototyping of the views
can be done by a user interface specialist working with end users. This
activity can take place in parallel and somewhat independent of the
development of the underlying business model objects.

• It supports multiple views of the same model object. Users can have several
concurrent views of the business model objects.

To use of this approach, it is necessary to implement the general concept of
Model-View-Controller (MVC). In this concept, there are two important points
to keep in mind:

− Views can directly update models, but models cannot directly update
views. Models inform the controller about a change, and the controller
tells all of the concurrent views to refresh their contents by reading the
model object again. So the controller knows all of the view objects, and
which model object′s data they present.

− Views contain only presentation and user manipulation logic. Business
logic should exist only in the model objects.

• It facilitates the distribution of the application in a client/server environment.
According to the different client/server models of application distribution, the
business logic can be distributed between a client and one or more servers.
The view objects do not depend on the location of the model objects; they
are also independent of any communications protocol. The model objects
encapsulate the communication between client and server and provide
methods to access distributed business logic. In this way, the user interface
can change to support different media, and the business logic and the
protocols of the client/server communication can change without changing
the view.

VisualAge supports the implementation of the model-view separation with two
different parts:

• Visual parts are elements of the application that the user can see at run
time. They are components of a presentation surface, such as a window, an
entry field, or a push button. These parts are edited in their visual run-time
form on the free form surface of the Composition Editor.

• Nonvisual parts are elements of the application that the user does not see at
run time. These parts are represented at development time by icons on the
free form surface. Examples of nonvisual parts are business logic, arrays of
data, communication access parts, and database queries.

The VisualAge mechanism to signal events supports the MVC concept. With this
mechanism, an object, or in this context, a part, informs the other parts that are
connected to it with attribute-to-attribute connections about a change to its
attribute values. We have to implement the controller object, which keeps the
information about which view object presents the data of which model object.

A simpler approach combines the view and the controller in a view component.
This simplification is also known as the MV/C concept. An implementation with
VisualAge parts needs a composite view part that contains all of the views of a

86 Building GUIs

model object that can be opened concurrently and are linked to the same model
object with connections. Of course, these views themselves can be implemented
as separate parts to provide a high degree of modularization.

We did not implement a separate controller part for our application. However,
we implemented separate view and model parts (refer to Figure 97 on page 93).
The details of our model-view separation design are described in 5.4,
“Model-View Separation” on page 93.

Chapter 4. Design and Implementation Considerations 87

88 Building GUIs

Chapter 5. Sample GUI Application Design Overview

In this chapter we present the objectives and assumptions of our project and
illustrate the design and implementation steps we went through when developing
our GUI application. We explain our design decisions, the model-view
separation implementation, and the restrictions of our design.

5.1 Project Objectives
The overall objective of our project was to build a GUI front end for an existing,
CICS-based host application using VisualAge′s EHLLAPI support. We wanted to
understand the EHLLAPI support provided by VisualAge and investigate different
implementation approaches for building GUI front ends using VisualAge. Our
experiences were to be documented and, if possible, recommendations made for
the implementation of real customer applications.

Before we started the project we established a number of ground rules to be
followed throughout the project:

• Provide added value to the existing application.

• Do not change the existing host application.

• Follow CUA* 91 guidelines for the GUI front end.

• Write as little Smalltalk code as possible.

We agreed that customers would not expend the effort and cost to build a GUI
front end for an existing application simply to provide the same function and
information as the existing application. To present information in a GUI window
rather than in a text screen would certainly not be enough. It was our highest
priority for our GUI application to provide added value to the existing application.

We assumed that, in real life, customers would use an EHLLAPI application in
situations where they could not or did not want to change an existing application.
We therefore decided that not changing the existing application was a high
priority. We wanted to verify and prove that an EHLLAPI application could be
developed using VisualAge′s EHLLAPI support without changing the existing
application.

As more and more applications provide a GUI as their user interface, the need to
standardize GUIs throughout an enterprise becomes more and more important.
Several GUI standards, such as CUA and OSF/Motif**, exist today, and it is
important for an enterprise to decide on a standard and apply it to all new GUI
development. We decided to follow CUA 91 guidelines for our project.

One aspect of our project was to get a feeling for what could be done visually in
VisualAge and what required Smalltalk code. We decided to try to use visual
programming whenever possible and write Smalltalk code only when absolutely
required. As it turned out, we did not quite follow through on that guideline, and
we used Smalltalk code in situations where we could have used visual
programming to make the coding easier and more understandable.

 Copyright IBM Corp. 1994 89

5.2 Design and Implementation Steps
We followed the steps illustrated in Figure 96 to design and implement our
sample application.

Figure 96. Design and Implementation Steps

5.2.1 Step 1: Develop an All-in-One Prototype for the View
The first step consisted of developing a running prototype of the user interface
component of the application. The prototype consisted of a number of windows
with hardcoded test data. The windows were connected to simulate the flow of
the GUI application. This prototype can be shown to the end user to verify the
look and feel as well as the function of the GUI application.

The best way to develop the prototype is to work directly with the end user.
VisualAge supports prototyping with its ability to change the running application
easily. The Smalltalk environment allows you to switch directly from
development in the Composition Editor to test mode without compiling or linking
code.

When you start prototyping the GUI for an existing host application, you must
analyze and understand the host application with its flow and sequence of host
maps. You also need to understand the details of the application functions and
the host map constellations that can occur. The best way to document this
analysis is a flow diagram of host maps with detailed descriptions of each map.

After analyzing the host application, we developed a first idea of the GUI
windows and a simple sequence of the windows on paper. An experienced
VisualAge developer could do this first-cut GUI design with VisualAge directly.

90 Building GUIs

For beginners it may be better to develop the first-cut GUI windows and their
relationship without any tool to keep the focus on developing the look and feel.

With these first-cut GUI windows, we used the Composition Editor to implement
the windows and their sequence. At this point it is not important to think about
separate parts. It is easier to develop a prototype with all windows in one
Composition Editor view than to start with separate visual parts. The idea is to
cut and paste the windows from this view in a later step to develop them as
separate parts.

If a single window of the prototype is isolated within the application and has no
connections to attributes of other windows, it can be prototyped as a separate
part from the beginning and added as a subpart to the main prototype view.
This is also true for groups of windows that are connected but isolated from
other groups of windows.

The advantage of the all-in-one view is that it is not necessary to provide public
interface definitions for the separate parts from the beginning. Controls on the
windows can be linked directly with attribute-to-attribute connections, for
example, two entry fields or two list boxes in different windows. The
disadvantage of the all-in-one view is that the windows in the same Composition
Editor view may have to overlap in order to have them in the right position
during test.

To provide test data for the prototype, we put controls (labels, entry fields, and
list boxes) directly onto the free form surface, specified initial values, and
connected those controls to the controls in the windows. Another way would be
to define initial values for the controls in the windows.

5.2.2 Step 2: Design the Object Model from the Existing Application
To design the object model from the existing application we looked at the host
application with its screens and the functions that could be executed on those
screens.

From a detail screen we derived one or multiple real-world (model) objects, for
example, a customer or a customer order. From the browse screens we derived
the list model objects, for example, a customer list or a customer order list. You
cannot usually derive model objects from screens that show menu structures or
input fields to search for information.

The object model should show all model objects of the application with attributes
and actions. If possible, it would be nice at this point to define some events that
the model objects should provide—at least those events that signal whether an
action has executed successfully or not.

The object model provides an almost complete definition of the public interface
of the nonvisual or model parts. You may want to document your object model
with pictures, as in Figure 199 on page 176.

Chapter 5. Sample GUI Application Design Overview 91

5.2.3 Step 3: Extract the Parts and Implement Them Separately
Based on our prototype we decided that each window should be a separate part
and that each element of a window that could be potentially reused should be
implemented as a separate part. The more granularity you have the greater the
degree of reusability.

There is no fixed rule about which elements of a window should be implemented
as separate parts. The guideline should be the potential for part reuse, for
example, for a specific entry field or a group of entry fields. You should also
consider common logic in similar parts (classes) that can be implemented in
abstract parts and provided through inheritance to the similar parts.

To document this step, you can provide a picture that shows the assembly
structure of a visual part with its subparts (refer to Figure 125 on page 122).

5.2.4 Step 4: Test Each Part Separately
After developing each part or a group of parts, we tested these basic building
blocks for the application. The test can be done separately. In some situations
it is useful to test a nonvisual part with a test driver window instead of a real
visual part.

5.2.5 Step 5: Assemble and Test the Whole Application
Following the idea of construction from parts, the different parts, which we tested
separately, can be combined to form composite parts and, at the end, an
application. The number of connections between the different parts can be used
as an indicator of the quality of an application constructed from parts. You
should have only a few connections between the different parts in the
Composition Editor view of the application.

Once the entire application is assembled it must be tested to ensure the proper
functioning of the application.

5.3 Design Decisions
We made the following design decisions for our GUI application:

• Use design model 4 to map the host screens to a GUI.

With this model we could provide a sophisticated GUI application, where the
user has control of the application, and the PWS triggers communication to
the host session. Behind a single GUI window, a sequence of host screens
is processed, and the start and end point of the sequence is always the
same host screen. This is the SPOC in the existing host application.
Windows of the same class are allowed to be open concurrently as multiple
instances within the application.

• Implement model-view separation without a separate controller component.

With this approach, the visual parts of the application are independent of the
underlying communication protocol. Changing the protocol between the
client and the server affects only the model side of the application.

• Construct the application from parts.

Our intention was to design and implement reusable parts for the view,
model, and communication aspects of the application. Some of the parts are

92 Building GUIs

abstract parts, which pass on their behavior and their interface to
specialized part subclasses.

5.4 Model-View Separation
Figure 97 shows the basic design model of our GUI application with the view
components and the model components.

Figure 97. Model-View Separation for the GUI Application

The static aspect of our design model consists of view and model objects. We
have several window objects on the view side (left):

• The main window of the application as a single instance window

• The select customer list dialog window as a single instance window

• Multiple instances of customer list windows

• Multiple instances of customer detail windows

• A single instance of a window to add a new customer.

We have three basic model objects on the model side (right):

• A CustomerList object that creates customer list collections

• A Customer object that creates a new instance for each customer to be
shown in a view

• A technical communication object (SideInfo) that provides
communication-specific information.

The dynamic aspects of our design model are described by the following steps:

Chapter 5. Sample GUI Application Design Overview 93

 1. The window to enter the selection criteria for a customer list is opened from
the main window.

 2. After the selection criteria are entered in the view part, a getList request is
sent to the model part CustomerList.

 3. The CustomerList object exists only once in the whole application. It has a
method to read the list from the existing host screens using the SideInfo
part, and it creates a customer list items collection instance. At the same
time, the CustomerList object creates and opens an instance of a
CustomerList window, where the customer list items collection instance is
used as a variable connected to a list box.

 4. The selection of an item in the list box with the customer name and number
triggers a getCustomer request, which is sent to the Customer model object.

 5. The Customer model object executes the getCustomer method with the
customer number passed as a parameter, which triggers the host application
to read the details of the customer.

 6. The result of this method is the creation of a Customer instance and a
customer view object instance, which is opened from the Customer object.
The new instance of the Customer object is passed as a variable to the
customer view. The messages to update, refresh, or delete this customer
are sent from the window to the Customer object passed as a variable.

 7. A single instance of a window to add a new customer can be opened from
the main window.

 8. The addCustomer request from this window is also sent to a Customer
object, which adds the customer using the existing host application.

We used the following mechanisms to connect the view with the model objects in
our application:

• The main window has the CustomerList model object added as a subpart,
and the selection dialog window sends its requests to this subpart.

• The CustomerList model object passes a pointer to itself (#self) to a variable
in the instantiated customer list view object.

• The customer list view object has a Customer model object added as a
subpart to send a getCustomer request.

• The Customer model object creates another instance of a Customer model
object and passes this instance as the value of a variable to the new
customer window instance.

• The add customer view object contains a Customer model object as a
subpart.

5.5 Restrictions of the Design
Because we did not implement a pure MVC architecture, we could not control
whether multiple instances of a customer list window or a customer window
presented the same model object. It is possible to open more than one window
for the same customer and update the customer data in one window. The other
windows are not updated simultaneously.

A solution would be to control the opened customer windows in a way that only
one window for a customer with the same customer number can be opened.

94 Building GUIs

We do not address the queueing of communication requests from several model
objects. Because the host session is the bottleneck in an EHLLAPI application
and the number of parallel host sessions is limited, you would need to lock the
host session while a single request is being processed on the session. To avoid
the situation where the functions that can start a host communication are
disabled in all windows while the host session is occupied, you would have to
queue the requests for the host.

Chapter 5. Sample GUI Application Design Overview 95

96 Building GUIs

Chapter 6. Designing the GUI

The first step in building our VisualAge EHLLAPI application was to design the
GUI for the host application. We used the host application described in
Client/Server Computing with AD/Cycle Application Generators for our project.
The source code for this application is provided on a diskette with the Redbook.
The application was coded with CSP/AD and runs under CICS.

Note that the language used to write the host application or the environment in
which the host application executes made no difference for our VisualAge
EHLLAPI application. For example, the host application could run under CMS,
TSO, CICS, or IMS/DC, and the VisualAge EHLLAPI application would be the
same. This is one advantage of using the VisualAge EHLLAPI support.

In this chapter we explain the steps we went through to design the GUI for our
host application.

6.1 Understanding the Host Application
Before we started the design of our GUI interface for the existing host application
we had to understand the existing, text-based application interface. There was
no need to understand the internals of the application, such as how it accessed
the data or whether it used DB2 or VSAM, but we needed to understand the 3270
screens and their relationships to each other.

We executed the host application and performed all available functions to display
all 3270 screens. We also looked at the source code of the host application to
find all host screen maps to be sure our testing was complete.

You might have to make some decisions at this point—for example, should the
help screens from the existing application be used for the GUI application or
should help be implemented at the PWS using VisualAge′s help facility.
VisualAge′s help facility is nice, but sometimes host applications have a very
sophisticated help facility using help texts stored in host databases. It is your
decision as to whether you want to migrate the host help facility to the VisualAge
help facility.

Remember that you must provide added value to the existing application through
the GUI interface. It is not enough to provide the same functions as the existing
user interface or present the same information in a GUI window.

6.1.1 Sequence of Host 3270 Screens
Figure 98 on page 98 through Figure 102 on page 100 demonstrate a sequence
of 3270 host screens resulting from a user updating a partner. Here are the
activities:

• The user entered B* in the Partner Name field of map TCL0M01 (see
Figure 98 on page 98).

 Copyright IBM Corp. 1994 97

� �
TCL0M01 Customer Inquiry

 Partner Number : _
 Partner Name : B*
 Search to : _

 Command ==>_

 Enter F1=Help F3=End F5=Refresh� �
Figure 98. Customer Inquiry Screen. The fields highlighted with underscoring (_) are not
protected.

• The result of entering this input was a list of partners as shown in Figure 99.

� �
TCL0M01 Customer Inquiry

Partner
Number Partner Name

 _ 0000501 Baylis, John G
 _ 0000551 Birsfelder, Markus
 _ 0000552 Bonde, Anders
 _ 0015001 Baylis, B.
 _ 0015051 Birsfelder, A.
 _ 0015052 Bonde, A.
 _ 0015201 Baylis, B.
 _ 0015251 Birsfelder, B.
 _ 0015252 Bonde, B.
 _ 0015301 Baylis, C.
 _ 0015351 Birsfelder, C.
 _ 0015352 Bonde, C.
 _ 0015401 Baylis, G.

More: +
 Partner Number : _
 Partner Name : B*
 Search to : _

 Command ==>_

 Enter F1=Help F3=End F5=Refresh F8=Forward

� �
Figure 99. List of Partners Starting with B. The fields highlighted with underscoring (_)
are not protected.

• The user pressed PF8 until the name to be updated (Barosa) was on the
screen and entered U for update (see Figure 100 on page 99).

98 Building GUIs

� �
TCL0M01 Customer Inquiry

Partner
Number Partner Name

 _ 0015451 Birsfelder, G.
 _ 0015501 Baylis, D.E.
 _ 0015551 Beelder, D.E.
 _ 0015552 Bonde, D.E.
 _ 0015601 Baylis, H.
 _ 0015651 Birsfelder, H.
 _ 0015652 Bonde, H.
 _ 0015656 Beavis
 _ 0015657 Butt-head
U 0015658 Barosa, R. W.

More: -
 Partner Number : _
 Partner Name : B*
 Search to : _

 Command ==>_

 Enter F1=Help F3=End F5=Refresh F7=Previous

� �
Figure 100. Partner Selected for Update. The fields highlighted with underscoring (_) are
not protected.

• On the Customer Update screen, the user changed the fields as desired and
pressed enter (see Figure 101).

� �
TCL0M03 Customer Update

Update details and press Enter

Name....... Mr. Barosa, R. W.

Address.... Rua das Andorinhas 10 Phone... 4084289900

apt 104 Fax..... 40869

Campinas Telex... _

State...... SP Zip.... 04735

Industry... Diving

Contact.......... Ms. Dude

Customer since... 05/22/1990

 Modify details and press Enter
 Command==> _
 F1=Help F3=End� �

Figure 101. Update Screen. The fields highlighted with underscoring (_) are not
protected.

• The customer list was displayed again as shown in Figure 102 on page 100,
and the user could use PF5 to refresh the list.

Chapter 6. Designing the GUI 99

� �
TCL0M01 Customer Inquiry

Partner
Number Partner Name

 _ 0015451 Birsfelder, G.
 _ 0015501 Baylis, D.E.
 _ 0015551 Beelder, D.E.
 _ 0015552 Bonde, D.E.
 _ 0015601 Baylis, H.
 _ 0015651 Birsfelder, H.
 _ 0015652 Bonde, H.
 _ 0015656 Beavis
 _ 0015657 Butt-head
 _ ** Record updated - press F5 to refresh list **

More: -
 Partner Number : _
 Partner Name : B*
 Search to : _

 Command ==>_

 Enter F1=Help F3=End F5=Refresh F7=Previous� �
Figure 102. Successful Update Screen. The fields highlighted with underscoring (_) are
not protected.

6.2 Sequence of GUI Windows
We did the first-cut design for our GUI windows on paper as a team exercise.
We followed CUA 91 recommendations for the GUI design. A good source of
information for GUI design is Object-Oriented Interface Design: IBM Common
User Access Guidelines. Figure 103 on page 101 shows our first-cut design.

100 Building GUIs

Figure 103. Sequence of GUI Windows at the PWS

6.2.1 What Are the Advantages of the GUI Interface?
We decided to implement the GUI application such that multiple customer list
windows and customer detail windows could be open at the same time. This
was a feature not available in the existing application unless multiple host
sessions were used.

The existing host application displayed the customer list in partner number
sequence only. We decided to implement a feature in our GUI application that
allowed users to sort the customer list by partner name without changing the
existing host application. If we decided to implement that feature in the host
application, depending on how the host application was coded, the changes
required could be severe because another set of I/Os to the database could be
required to sort the results by name.

We also decided to add a feature to the GUI application that would allow users to
invoke a PWS editor to write a letter to a customer by just clicking on a push
button on the customer detail window. The letterhead would be created
automatically from the available customer information.

The GUI application we developed can be used in an environment where
nonprogrammable terminals (NPTs) and PWSs coexist in the same network.
Users sitting at a PWS can benefit from the added value provided by the GUI
application, and users sitting at an NPT can still use the existing, text-based
interface of the host application. This allows for a smooth transition from
text-based user interfaces to GUIs.

Chapter 6. Designing the GUI 101

Other features that could easily be added to our GUI application include
multimedia, automatically initiated phone calls, and automatically sending FAXes
to a selected partner.

6.3 Prototyping the GUI Windows
After we finished our first-cut GUI design we implemented a prototype of our GUI
interface with VisualAge. Implementing a prototype is an important step,
because it allows you to show the sequence of GUI windows to the end users.

VisualAge was an excellent tool for GUI prototyping. We could easily create
prototypes, and, if required, easily change them. Basically there are two
approaches to building a GUI prototype:

• All-in-one
• Layered.

Both approaches had advantages and disadvantages.

An all-in-one prototype was easy to create and kept everything on one
Composition Editor free form surface. The drawbacks were that the Composition
Editor got cluttered, and reusing parts from the prototype for the final GUI
application was difficult.

A layered prototype allowed the reuse of components from the prototype for the
final GUI application, and the Composition Editor was not cluttered. However, a
layered prototype was a little more difficult to create, and the all-in-one view
effect in the Composition Editor was lost.

We decided to create an all-in-one prototype to give us an idea of the GUI
window sequence. Figure 104 on page 103 shows our prototype in the
Composition Editor.

It is not good design practice to have the entire application in one part. For our
final implementation we used the construction from parts technique.
Construction from Parts Architecture: Building Parts for Fun and Profit is a good
reference regarding the technique.

102 Building GUIs

Figure 104. GUI Prototype in the Composition Editor

Note that we also added a list box with some test data to the free form surface to
allow us to select a specific customer from the customer list window.

To explain the connections, we added numbers and text (in italics) to the
Composition Editor. Those numbers are related to the numbers in Figure 105
where the visual connections are explained.

1. Shell1(#menu) --> Menu (#self)
2. Customer cascade Button(#menu)--> Menu1(#self)
3. Exit Push Button (#clicked) --> Main Window(#closeWidget)
4. List Customer Button(#clicked)--> Customer Inquiry(#openWidget)
5. OK Push Button (#clicked) --> Customer Inquiry(#closeWidget)
6. Cancel Push Button (#clicked) --> Customer Inquiry(#closeWidget)
7. OK Push Button (#clicked) --> Customer List(#openWidget)
8. List(#items) --> List with some work data(#items)
9. List(#defaultActionRequested) --> Customer Detail Window(#openwidget)
10. OK Push Button (#clicked) --> Customer Detail Window(#openwidget)
11. List(#selectedItem) --> Name Entry Field (#string)
12 Cancel Push Button (#clicked) --> Customer List Window (#closeWidget)
13 Cancel Push Button (#clicked) --> Customer Detail(#closeWidget)

Figure 105. Connections for the GUI Prototype

Chapter 6. Designing the GUI 103

104 Building GUIs

Chapter 7. Running the Sample Application

In this chapter, we show the flow of the running application. We explain the
function of each window and discuss the sequence executed by the host
application.

7.1 Host Applications Window
After starting the application, the Host Applications window (Figure 106) is
displayed. This first window is a container view of icons, each representing a
host application that the user can select with a double-click. Our implementation
provides icons for two applications, the DB2 sample application and the CSP
sample application.

No EHLLAPI call is needed for this window. This is a stand-alone GUI window
that does not talk to the 3270 session. Therefore, our host session in the
background shows the VAMP screen.

Figure 106. Host Applications Window

7.2 Logon to the CSP Sample Application
After selecting the CSP sample application icon in the Host Applications window,
the Logon to CSP Sample Application window is displayed (Figure 107 on
page 106). The window provides a list box with all active 3270 sessions. We
can select a session in the list box, in our example, session F, and click on the
Apply push button to choose the session to log on and run the host application.
A shortcut for selecting the session ID is to double-click on the session in the list
box. The selected session ID (the first time, the default session id) is always
shown in the Connect to field.

The User ID and Password fields are provided to enter the userid and password
for the host logon procedure. Because our CICS system works without security
installed, the function behind these entry fields is not implemented.

 Copyright IBM Corp. 1994 105

Figure 107. Logon to CSP Sample Application

After entering the data in this window, we click on the OK push button to start
the logon procedure. Following this user action, the GUI application enters the
string CICSA on the F session, and after the CICS good morning message panel
is shown, activates the Clear key. The result is an empty host screen waiting for
a transaction code to be entered.

7.3 Customer Application (Main) Window
The next window is the Customer Application (Main) window of the CSP sample
application (see Figure 108). This window is a container view with icons to
select the different application functions. By double-clicking on the appropriate
icon, we can add a new customer, show a list of customers, or jump to the host
session we selected in the logon window—session F in our case.

Figure 108. Customer Application (Main) Window

The Customer Application (Main) window provides an action bar with a
Customer menu item. The Customer menu provides a pull-down with three
entries: Add Customer, List Customer, and Exit. Selecting the menu items has

106 Building GUIs

the same effect as selecting an icon. The other action bar menu items are not
completely implemented; they are there to give you an idea of a full function
CUA action bar.

The Customer Application (Main) window involves no host communication; the
host session is still waiting for a transaction code.

7.4 Customer List Selection
Selecting the Customer List icon in the Customer Application (Main) window
brings up the CustomerList Selection window (Figure 109) where the selection
criteria for the customer list can be entered. The selection critera can be
entered as a combination of:

• Start name
• End name
• Customer number.

At least one selection criterion must be entered. Wildcard searches (substring
ended with an asterisk) are supported.

We enter * in the Name from field to get a list of all customers.

Figure 109. CustomerList Selection

After we click on the OK push button, the GUI application starts to talk to the
host session. The CICS transaction code STLC is entered, the data for the
search criteria is entered into the input fields of the host map, the enter key is
pressed, and the resulting host list is scrolled using PF8 and read by the GUI
application until the end of the host list is reached. After the whole list of
customers is read by the GUI application, the GUI application activates the PF3
key to exit the host application. The host session shows the black CICS screen
again, ready to receive the next transaction code. This is the common entry
point, or SPOC, to our host application.

Chapter 7. Running the Sample Application 107

7.5 Customer List Window
The next window is the CustomerList window (Figure 110) with a list box and
several buttons. The list box shows items with a customer number and a
customer name. The result of our selection is a list starting from customer
name A* to Z*. The items in the list box are sorted by name.

We can easily do some processing on the PWS, because we now have the list
data on the PWS. If we click on the Sorted by Number radio button, the items in
the list are sorted locally on the PWS and shown again in this new sorting
sequence. This is a new function, provided only by the GUI application.

Figure 110. CustomerList Window

7.6 Find in Customer List
The GUI application has the advantage of having the customer list data available
on the PWS. Therefore, it is possible to implement a function to find a specific
substring in the customer list without any host communication.

Clicking on the Find in List... push button brings up the Find in CustomerList
window (Figure 111 on page 109) where a substring for the local find function
can be entered. We enter the string Ha (no * required) and click on the Find
push button. The result is the subset of the list of items from the customer list
where the Ha substring is found. Figure 111 on page 109 shows the Find in
CustomerList window with two customers with Ha in their names.

108 Building GUIs

Figure 111. Find in CustomerList Window

7.7 Refresh Customer List
Because the customer list data is kept on the PWS for as long as the
CustomerList window is open, it is necessary to provide the ability refresh the
customer list data from the host. New customers can be added or existing
customers can be deleted by other users while the list data is kept on the PWS.
The refresh function rereads the customer list from the host.

To initiate the refresh function we click on the Refresh List... push button in the
CustomerList window (Figure 110 on page 108). The Refresh CustomerList
window (Figure 112 on page 110) is opened with the selection criteria from the
customer list selection dialog kept in the entry fields. In our example, the * in
the Name from field selects the entire list of customers. We could overtype the
values in the entry fields of the Refresh CustomerList window and make a new
selection.

Clicking on the Refresh push button starts the host communication, and the
result is the refreshed list in the same CustomerList window (see Figure 112 on
page 110).

Chapter 7. Running the Sample Application 109

Figure 112. Refresh CustomerList Window

The host application sequence is the same as when the customer list was
created initially.

7.8 Multiple Instances of Customer List Window
We implemented model 4 of the design approaches for mapping the host
application to the GUI (refer to 4.2, “Design Models to Map Host Screens to GUI”
on page 83). Therefore, we could open multiple instances of the GUI windows.
Figure 113 shows a second instance of the Customer List Window to illustrate
this capability.

Figure 113. Multiple Instances of CustomerList Windows

We select the Customer List icon in the Customer Application (Main) window,
which brings up the dialog to enter the customer list selection criteria for the
second CustomerList window. We enter H* in the Name from field to select all
customers with a name starting with H. The result is the second CustomerList
window shown in Figure 113.

110 Building GUIs

The host application sequence is the same as when the first customer list was
created. In the end the host is on the CICS screen, waiting for the next
transaction code.

7.9 Customer Detail Window (Address Page)
Now we select a customer from the customer list to show the detail information
for this customer. We select customer Barosa, R.W. with customer number
0015658. The result of this selection is a window with a notebook with two pages
containing the detail data for the customer address and contacts (see
Figure 114).

Compared to the host screen for the customer detail information (see Figure 101
on page 99), the GUI application with the notebook lets us present the data in
logical groups. Changing customer data is improved by providing drop-down
lists for the title, state, zip code, and industry code fields. We can select one of
the predefined items in the drop-down list instead of having to remember the
correct values and typing those values in the entry fields of the host application.

The customer detail window also provides push buttons to refresh the detail
information and update or delete the customer.

Figure 114. Customer Detail Window (Address Page)

Hidden behind the function of the GUI application that reads the details of a
specific customer is a lot of EHLLAPI-to-host communication. The transaction
code STLC is entered, the unique customer number for the search criteria is
entered into the number input field on the host map, and the enter key is
pressed, which results in a list with one item: the customer with the specified
customer number. The GUI application types an S to select the details for the
customer on the first line of the list, and the customer detail map appears. On
this screen the GUI application reads all output fields and presses PF3 twice to
go back to the blank CICS map, the entry point for the next host request.

Chapter 7. Running the Sample Application 111

7.10 Writing a Letter for the Customer
Another added value we can provide in a GUI application is the integration with
other PWS applications. We can start a PWS application and pass data to that
application. In our example, we show how to start a PWS editor to write a letter
to a selected customer. The customer address is automatically inserted into the
letterhead.

We click on the write a letter icon, and the GUI application starts the OS/2 EPM
editor after we specify a file name through the standard file dialog. The result of
this user action is shown in Figure 115. The GUI application has passed the
address of our customer Barosa to the EPM editor.

Figure 115. Writing a Letter for a Customer

We can now finish, print, and save the letter for our customer. This is just one
example of application integration on the PWS. There are certainly many other
situations where we could pass data from the host directly to standard software
on the PWS.

7.11 Customer Detail Window (Contacts Page)
If you wanted to call or send a FAX to a customer you would select the tab with
the Contacts labels in the customer detail notebook and get the second page of
the notebook with the phone, FAX, and telex numbers (see Figure 116 on
page 113). Similar to the push button to write a letter on the first page, there is
an icon next to the phone number for initiating a call and an icon next to the FAX
number for sending a FAX to the number in the entry field. We did not
implement these two functions in our sample application. We mention them here
to give you an idea of additional functions and application integration on the
PWS that can improve the function of the host application.

112 Building GUIs

Figure 116. Customer Detail Window (Contacts Page)

7.12 Multiple Customer Detail Windows
It is possible to have multiple customer detail windows for different customers
open at the same time (see Figure 117). To make it easy to distinguish the
different detail windows we use the customer name as the window title.

Figure 117. Multiple Customer Detail Windows

7.13 Add Customer Window
To add a new customer, we select the New Customer icon in the Customer
Application (Main) window. The New Customer window (Figure 118 on
page 114) is opened and shows the same notebook for entering customer data
as we saw in the customer detail window. The difference between the two
notebooks is that the new customer notebook has no customer number, because
the customer number is created when the customer is added.

Chapter 7. Running the Sample Application 113

The Erase fields push button in the lower right-hand corner of the notebook is
used to initialize all entry fields with a blank value. This function is useful when
adding more than one customer; you do not need to overtype the values of a
previously added customer. By default, the values entered for a customer are
kept in the entry fields for situations where only a few of the entry fields change
from one customer to another.

We click on the Add more push button to add more than one customer. This
action keeps the New Customer window open after the customer is added
successfully, and we can add additional customers. We click on the Add push
button if we want to add one customer only. The New Customer window is
closed automatically after the customer has been added.

Figure 118. New Customer Window

The Add and Add more functions of the GUI application involve a lot of
EHLLAPI-to-host communication. The transaction code STLC is entered. The
host application does not implement the function to add a new customer with a
separate transaction code that we can execute directly. Instead, we must select
a list of customers and type N (for new) in front of any customer in the list.
Therefore, our GUI application starts a selection of all customers by typing * in
the Name from input field on the host map. On the first line of the resulting
customer list, the GUI application types N to get to the detail window to add a
new customer. The GUI application passes the data for the new customer from
the notebook to the host application and presses enter to add the new customer.
To finish and go back to the common entry point, the GUI application presses
PF3.

114 Building GUIs

Chapter 8. Implementation Walkthrough

In this chapter we describe the implementation of our sample application
step-by-step by walking you through the parts. To facilitate comparison the
sequence of the walkthrough is the same as the application flow described in
Chapter 7, “Running the Sample Application” on page 105.

We use the following structure to describe the parts with their static and the
dynamic behavior:

Part name Smalltalk name of the part (class)

Category Visual, nonvisual

Abstract (used only for inheritance), basic, composite
(built from parts)

Description Short description of the part and its function.

Composition Editor view Screen capture of the Composition Editor with labels or
numbers to explain the connections

Part assembly Picture showing the part′s assembly structure. In the
assembly structure, we show only the parts we
implemented for the sample application, not all
VisualAge standard parts that are also used as
subparts

Public interface Picture showing the part′s public interface with the
action, attribute, and event definitions

Used in part Reference where this part is used to build another part

Superclass of Picture showing where the class is inherited as a
superclass.

Class definition Smalltalk class definition with superclass, instance
variables, class variables, and pool dictionaries

Scripts Table with methods implemented in Smalltalk with a
short description, followed by the code listings

Event trace Table with user actions and the sequence of
connections that are triggered from the user action

Special comments Hints and tips for the part implementation and
background information and reasons to explain why a
specific solution was chosen.

During the walkthrough and the structured description of the parts, we also give
some how to information that you can use as coding examples.

Before we go to the detailed description of each part we want to give some
overview information about the parts of our application. When we open
VisualAge′s application browser for the sample application we see that the
application is built from 23 different parts (see Figure 119 on page 116).

 Copyright IBM Corp. 1994 115

Figure 119. Application Browser for the CSP Sample Application

The ItsCspSampleApp and ItsCspSampleAppAbtPackage parts were generated
automatically by VisualAge when we created the ItsCspSampleApp application.
In the Prerequisites list box on the right-hand side of the application browser we
can see the list of prerequisite applications required to run our application. Our
application uses parts or methods from all of these applications, which are part
of the VisualAge product.

Another way of looking at the parts of our sample application is from an
inheritance point of view. Figure 120 on page 117 gives an overview of the
Smalltalk class hierarchy for our CSP sample application.

116 Building GUIs

Figure 120. Class Hierarchy for the CSP Sample Application

The parts inherited from the AbtAppBldrView class are the visual parts of our
application. The parts inherited directly from the AbtAppBldrPart class are the
nonvisual parts of our application. Figure 120 shows the result of the
implementation of the model-view separation in the class hierarchy.

If we also distinguish between abstract parts, which are used only for
inheritance, basic parts, which are the basic building blocks for other parts, and
composite parts, which are built from basic parts, we can distinguish the
following categories of parts implemented for the sample application:

 1. Visual parts

• Abstract parts

− ItsCspSampleCustomerNotebookForm
− Its3270LogonToHostWindow

• Basic parts

− Its3270SessionSelectionForm
− Its3270UserIdPasswordForm
− ItsCspSampleCustomerNumberForm

Chapter 8. Implementation Walkthrough 117

− ItsInformationLineForm
− ItsOkCancelHelpForm
− ItsProcessingWindow

• Composite parts

− Its3270Applications
− ItsCspSampleMainWindow
− ItsCspSampleCustomerListSelectionWindow
− ItsCspSampleCustomerListWindow
− ItsCspSampleNewCustomerNotebookForm
− ItsCspSampleExistingCustomerNotebookForm
− ItsCspSampleCustomerWindow
− ItsCspSampleNewCustomerWindow
− ItsCspSampleLogonWindow
− ItsDb2SampleLogonWindow

 2. Nonvisual parts

• Abstract parts

− Its3270CommunicationSideInfo

• Basic parts

− ItsStringMessagebox
− ItsCspSampleCommunicationSideInfo

• Composite parts

− ItsCspSampleCustomerListModel
− ItsCspSampleCustomer

8.1 3270 Applications Window
The Its3270Applications part contains the Host Applications window that comes
up when the application is started. The Host Applications window is just a folder
that provides all of the 3270 applications for the user. It is a kind of master
application from which the specific business applications can be started.

• Part name

Its3270Applications

• Category

Visual composite part

• Description

This part has a primary window with a container of icons for each 3270 host
application. For each application we add the part to log on to the host and
the part for the main window of the application. This is what you see in the
Composition Editor view. There is a logon window for the CSP sample
application and its main window and a logon window for the DB2 sample
application. There is no main window for the DB2 sample application
because the GUI for this application is not implemented.

• Composition Editor view

Figure 121 on page 119 shows the Composition Editor view for the 3270
Applications window.

118 Building GUIs

Figure 121. Composition Editor View: Its3270Applications

Note: The numbers next to the visual connections are for documentation
purposes and correspond to the event numbers in the event trace in
Table 7 on page 120.

• Part assembly

Figure 122 shows the part assembly for the 3270 Applications window.

Figure 122. Part Assembly: Its3270Applications

• Public interface

Chapter 8. Implementation Walkthrough 119

None (this is the master window and therefore it is not used in other parts)

• Used in part

None

• Superclass of

None

• Class definition

Figure 123 shows the class definition for the 3270 Applications window.

AbtAppBldrView subclass: #Its3270Applications
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 123. Class Definition: Its3270Applications

• Scripts

None

• Event trace

Table 7 shows the event trace for the 3270 Applications window.

Table 7. Event Trace: 3270 Applications Window

User Action Sequence of Executed Connections

Double-click on CSP
sample application icon

(1) defaultAction >> openWidget (CSP Sample Logon Window)

Double-click on DB2
sample application icon

(2) defaultAction >> openWidget (DB2 Sample Logon Window)

Logon dialog finished
with OK, connected to
host sessionId

(3) event: #SessionEstablished >> openWidget (CSP Sample Main
Window)

• Special comments

Providing a container window with all host applications in fact is comparable
to the workplace shell folder concept. We opted to provide a container
window because it was easier for us to deliver the sample application and
show how to present the 3270 applications to the end user.

 Recommendation

To group several GUI applications for existing host applications for the
end user we would create a workplace shell folder for all packaged GUI
applications. This solution looks the same as our implementation, but it
is easier to add additional applications because there is no hardcoding in
the 3270 application container window.

To implement this approach for the sample application we would have to
create separate applications for the CSP sample application and the DB2
sample application and implement the logon windows for the applications
as primary parts. The logon windows would open the main window of the
respective application after the logon request was successful.

120 Building GUIs

8.2 3270 Logon to Host Window
After an application is selected, the user selects the session ID and performs the
logon to the host. Because this procedure is the same for all host applications,
we decided to implement an abstract class that provides the basic functions to
select a session ID and enter a userid and password.

• Part name

Its3270LogonToHostWindow

• Category

Abstract, composite visual part

• Description

This part is an abstract implementation of a generic logon dialog for an
EHLLAPI application. It is used for inheritance. The way to use this part is
to produce a logon dialog subpart for each EHLLAPI application. Creating a
logon dialog subpart for each EHLLAPI application enables us to have each
application connected to a different 3270 session. The logon dialog subpart
has to store the selected session ID for the application in its communication
side information (SideInfo) part.

• Composition Editor view

Figure 124 shows the Composition Editor view for the Logon to Host window.

Figure 124. Composition Editor View: Its3270LogonToHostWindow

Note: We added comments to the free form surface to document the visual
connections. This is a nice and easy way to document VisualAge
applications but has the following drawbacks:

− Generates extra Smalltalk code, which could affect performance

− The comment positions are lost when you file-out/file-in your
application.

Chapter 8. Implementation Walkthrough 121

• Part assembly

Figure 125 shows the part assembly for the Logon to Host window.

Figure 125. Part Assembly: Its3270LogonToHostWindow

• Public interface

None

• Used in part

None

• Superclass of

Figure 126 on page 123 shows the inheritance hierarchy for the Logon to
Host window.

122 Building GUIs

Figure 126. Inheritance Hierarchy: Its3270LogonToHostWindow

• Class definition

Figure 127 shows the class definition for the Logon to Host window.

AbtAppBldrView subclass: #Its3270LogonToHostWindow
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 127. Class Definition: Its3270LogonToHostWindow

• Scripts

None

• Event trace

Table 8 shows the event trace for the Logon to Host window.

Table 8. Event Trace: Logon to Host Window

User Action Sequence of Executed Connections

Click on Cancel push
button

pbCancelCl icked >> closeWidget

• Special comments

In this implementation, our abstract part mainly provides the view for the
logon window. Not much logic is implemented except to close the window
when the Cancel push button is clicked on.

Chapter 8. Implementation Walkthrough 123

In a next iteration, we would probably implement a method to validate
whether a session ID is selected or not and to signal an event when a
session ID is selected. Now these functions are implemented in the CSP
sample logon window (method: validateSession, event: SessionValidated).

There is no advantage, however, to provide attributes in the public interface
of this abstract part. Because this part is built from other parts, we would
have to put the attributes of the subparts, for example, the session ID, in the
public interface. This is just overhead, and it is easier to directly access the
public interface of the subparts.

8.3 3270 Session Selection Form
This part is used as a subpart in the Logon to Host Window (Figure 124 on
page 121).

• Part name

Its3270SessionSelectionForm

• Category

Basic visual part

• Description

This part provides the view and the logic to select a session for EHLLAPI
communication. It provides a list of active sessions from which users can
select a session. This generic part can be used in every logon or option
dialog for 3270 communication.

• Composition Editor view

Figure 128 shows the Composition Editor view for the 3270 Session Selection
Form.

Figure 128. Composition Editor View: Its3270SessionSelectionForm

• Part assembly

124 Building GUIs

None

• Public interface

Figure 129 shows the public interface for the 3270 Session Selection Form.

Figure 129. Public Interface: Its3270SessionSelectionForm

The Selected SessionId variable from the Composition Editor is added to the
public interface.

• Used in part

Its3270LogonToHostWindow

• Superclass of

None

• Class definition

Figure 130 shows the class definition for the 3270 Session Selection Form.

AbtAppBldrView subclass: #Its3270SessionSelectionForm
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 130. Class Definition: Its3270SessionSelectionForm

• Scripts

Table 9 on page 126 shows the scripts for the 3270 Session Selection Form.

Chapter 8. Implementation Walkthrough 125

Table 9. Scripts: Session Selection Form

Method Description

readActive3270Sessions
Reads all active sessions and returns a sorted collection of session
ids.

applySelection Returns the value of the selected item (session ID) in the list box.

Figure 131 shows the readActive3270Sessions method.

readActive3270Sessions

| sessions aDict |

sessions := Abt3270Terminal allSessions select: [:e |
((e at: #qsstSestype) = $D) | ((e at: #qsstSestype) = $F)].

aDict := Dictionary new.
sessions do: [:each | aDict at: (each at: #qsstShortname)

put: ((each at: #qsstShortname) asCharacter)].

^aDict asSortedCollection.

Figure 131. Method: readActive3270Sessions

Figure 132 shows the applySelection method.

applySelection

^self partAttributeValue: #(#List #selectedItem).

Figure 132. Method: applySelection

• Event trace

Table 10 shows the event trace for the 3270 Session Selection Form.

Table 10. Event Trace: Session Selection Form

User Action or Event Sequence of Executed Connections

Event: openedWidget
openedWidget >> readActive3270Session (hook), put result in the
list box

User action: double-click
on list box item

defaultActionRequested >> applySelection (hook), put result in
public interface variable and in entry field

User action: click on
Apply push button

clicked >> applySelection (hook), put result in public interface
variable and in entry field

• Special comments

The prerequisite for any EHLLAPI application is a started 3270 session.
There is currently a problem in VisualAge′s EHLLAPI support. The method of
asking whether EHLLAPI support is available does not work correctly when
the Communications Manager is stopped after the EHLLAPI application is

126 Building GUIs

started. The problem is in the isHllapiAvailable method of the Abt3270Hllapi
class.

How to Read All Active 3270 Sessions

To find out which 3270 sessions are active at run time, the following code can
be used:

| sessions aDict |

aDict := Dictionary new.

sessions := Abt3270Terminal allSessions select: [:e |
((e at: #qsstSestype) = $D) | ((e at: #qsstSestype) = $F)].

sessions do: [:each | aDict at: (each at: #qsstShortname)
put: ((each at: #qsstShortname) asCharacter)].

^aDict asSortedCollection.

8.4 UserID Password Form
This part is also one of the subparts used in the Logon to Host window
(Figure 124 on page 121).

• Part name

Its3270UserIdPasswordForm

• Category

Basic visual part

• Description

This is a part with two entry fields for userid and password. The part is
developed as a form that can be used as a subpart in a window.

We had no security installed on our CICS system and therefore did not
implement a userid and password check in our application. The entry field
for the password does not hide the user input. Because there is no option to
hide input available for an entry field, the code to hide user input must be
provided in a script.

For use in a customer application, this part must be enhanced with the
function to check the userid and password that are administered in a
security system, for example, in the user profile management system on the
PWS.

• Composition Editor view

Figure 133 on page 128 shows the Composition Editor view for the UserID
Password Form.

Chapter 8. Implementation Walkthrough 127

Figure 133. Public Interface: Its3270UserIdPasswordForm

The two variables UserId and Password in the Composition Editor are added
to the public interface.

• Part assembly

None

• Public interface

Figure 134 on page 129 shows the public interface for the UserID Password
Form.

128 Building GUIs

Figure 134. Public Interface: Its3270UserIdPasswordForm

• Used in part

Its3270LogonToHostWindow

• Superclass of

None

• Class definition

Figure 134 shows the class definition for the UserID Password Form.

AbtAppBldrView subclass: #Its3270UserIdPasswordForm
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 135. Class Definition: Its3270UserIdPasswordForm

• Scripts

None

• Event trace

None

8.5 OkCancelHelp Form
This is a basic part with three standard CUA push buttons to be used in forms or
windows.

• Part name

ItsOkCancelHelpForm

Chapter 8. Implementation Walkthrough 129

• Category

Basic visual part

• Description

This part has the three push buttons—OK, Cancel, and Help—as proposed by
the CUA 91 standard for windows and dialogs. This part shows how an
enterprise GUI standard can be implemented by building parts. The
approach to implementing parts for the standardized components in windows
is powerful and makes the implementation of a standard easy. The
developer can either use the standard part as is or extend the part using the
standard part as a superclass to inherit all standard behaviors.

• Composition Editor view

Figure 136 shows the Composition Editor view for the OkCancelHelpForm.

Figure 136. Composition Editor View: ItsOkCancelHelpForm

The Composition Editor shows three event-to-script connections.

• Part assembly

None

• Public interface

Figure 137 on page 131 shows the public interface for the
OkCancelHelpForm.

130 Building GUIs

Figure 137. Public Interface: ItsOkCancelHelpForm

• Used in part

− Its3270LogonToHostWindow
− ItsCspSampleCustomerListSelectionWindow
− ItsCspSampleCustomerListWindow

• Superclass of

None

• Class definition

Figure 138 shows the class definition for the OkCancelHelpForm.

AbtAppBldrView subclass: #ItsOkCancelHelpForm
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 138. Class Definition: ItsOkCancelHelpForm

• Scripts

Table 11 shows the scripts for the OkCancelHelpForm.

Table 11. Scripts: OkCancelHelpForm

Method Description

pbOk Signals the pbOkPressed event

pbCancel Signals the pbCancelPressed event

pbHelp Signals the pbHelpPressed event

Figure 139 on page 132 shows the pbOk method.

Chapter 8. Implementation Walkthrough 131

pbOk

^self signalEvent: #pbOkPressed.

Figure 139. Method: pbOk

Figure 140 shows the pbCancel method.

pbCancel

^self signalEvent: #pbCancelPressed.

Figure 140. Method: pbCancel

Figure 141 shows the pbHelp method.

pbHelp

^self signalEvent: #pbHelpPressed.

Figure 141. Method: pbHelp

• Event trace

Table 12 shows the event trace for the OkCancelHelpForm.

Table 12. Event Trace: OkCancelHelp Form

User Action Sequence of Executed Connections

Click on OK push button cl icked >> pbOk (hook)

Click on Cancel push
button

cl icked >> pbCancel (hook)

Click on Help push button cl icked >> pbHelp (hook)

• Special comments

Another way to implement an enterprise GUI standard is to build visual parts
with a standard look and feel and use them as templates. Subparts that
inherit from the template part can extend the standard part to add additional
controls. Inheritance extends to the view, logic, and public interface of a
part.

8.6 CSP Sample Logon Window
This part is the logon window for the CSP sample application. The part is
implemented as a subpart of the abstract Logon to Host window part. This part
is an example of a part that inherits its behavior from another part.

• Part name

ItsCspSampleLogonWindow

• Category

Composite visual part

132 Building GUIs

• Description

This is the only visual part in the sample application where a VisualAge
communication part is used directly from the window. This is an exception
to the principle of model-view separation, but in the case of an EHLLAPI
logon window it is not essential to implement the window communication
protocol independently.

The logon window is specific for an EHLLAPI application because it asks for
the session ID. Therefore, it cannot be used as a generic logon window for
other communication protocols.

This part contains the first window after a user starts the CSP sample
application from the 3270 applications container window. It asks the user for
the session ID, the userid, and password and stores the session ID as a
global value for the entire application in the communication side information
(SideInfo) part.

While the logon and the initialization process for the communication side
information part are in progress, the host processing window, another
subpart, is shown to give the user feedback.

Our application does not lock the push buttons while host communication is
processing. A second logon attempt can cause problems. In a real
customer application the push buttons should be disabled during host
communication to serialize user interaction with the host.

• Composition Editor view

Figure 142 shows the Composition Editor view for the CSP Sample Logon
window.

Figure 142. Composition Editor View: ItsCspSampleLogonWindow

• Part assembly

Figure 143 on page 134 shows the part assembly for the CSP Sample Logon
window.

Chapter 8. Implementation Walkthrough 133

Figure 143. Part Assembly: ItsCspSampleLogonWindow

• Public interface

Figure 144 shows the public interface for the CSP Sample Logon window.

Figure 144. Public Interface: ItsCspSampleLogonWindow

Note: The SessionValidated (*) event is only used within this part to draw
event-to-action connections in the Composition Editor.

• Used in part

None

• Superclass of

134 Building GUIs

None

• Class definition

Figure 145 shows the class definition for the CSP Sample Logon window.

Its3270LogonToHostWindow subclass: #ItsCspSampleLogonWindow
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 145. Class Definition: ItsCspSampleLogonWindow

• Scripts

Table 13 shows the scripts for the CSP Sample Logon window.

Table 13. Scripts: CSP Sample Logon Window

Method Description

validateSession

Validates whether a session ID is selected. If not, a message box is
shown telling the user to select a session ID. If a session ID is
selected, the internal SessionValidated event is raised to trigger the
logon to CICS processing.

sessionEstablished
Raises the public SessionEstablished event after the host
communication session is established.

Figure 146 shows the validateSession method.

validateSession

| selectedSession |

selectedSession :=
(self partAttributeValue: #(#SelectSessionId #′ Selected SessionId′)) .

(selectedSession isNil) ifTrue:
[CwMessagePrompter

errorMessage: ′ No Session selected !′ .
^self.

].

^self signalEvent: #SessionValidated.

Figure 146. Method: validateSession

Figure 147 on page 136 shows the sessionEstablished method.

sessionEstablished

^self signalEvent: #SessionEstablished.

Figure 147. Method: sessionEstablished

• Event trace

Chapter 8. Implementation Walkthrough 135

Table 14 shows the event trace for the CSP Sample Logon window.

Table 14. Event Trace: CSP Sample Logon Window

User Action or Event Sequence of Executed Connections

Event:
aboutToOpenWidget
(initialization)

(1) aboutToOpenWidget >> action: read the selected session ID (the
default) and pass the result to the SideInfo part.

User action: click on OK
push button
(pbOkPressed event)

(2) pbOkPressed >> validateSession (hook) and raise the
#SessionValidated event if the selection is valid

(3) event: #SessionValidated >> openWidget processing window

(4) event: #SessionValidated >> init ializeTerminalWithSessionId
(SideInfo)

(5) event: #SessionValidated >> findString: ′VAMP VERSION′

(6) event: #SearchSuccessful >> keyClear

(7) event: #SearchSuccessful >> enter: ′CICS′ AndWaitForString:
′Welcome to CICS/ESA′

(8) event: #SearchSuccessful >> closeWidget logon window

(9) event: #SearchFailed >> closeWidget logon window

(10) event: aboutToCloseWidget >> closeWidget processing window

User action: click on
Cancel push button
(pbCancelPressed event)

(11) pbCancelPressed >> closeWidget logon window

• Special comments

The logic to implement the logon to CICS from the VAMP screen is done
through visual programming. The terminal used is torn off from the
communication side information part and already knows its session ID. The
logic for the CICS logon is as follows:

 1. Find string ′VAMP VERSION′

 2. Enter ′CICSA′ and wait for the CICS good morning message screen.

The enter:andWaitForString: method of the Abt3270Terminal part is key for
this EHLLAPI dialog, because we have to wait until the CICS good morning
message is shown before we enter the next host command. If we do not
wait and just enter the next host command, we are too fast and the
synchronization with the host application is lost.

How to Show an Error Message Box

The following code can be used to show an error message box from a script:

CwMessagePrompter errorMessage: ′ This is the errortext′ .

136 Building GUIs

8.7 Processing Window
The window in this part is always shown when the GUI application talks to the
host.

• Part name

ItsProcessingWindow

• Category

Basic visual part

• Description

This part is a window used to give the user feedback when the host is
processing. It is added as a part in other visual parts, shown when the host
is active, and hidden when communication to the host application has
finished.

• Composition Editor view

Figure 148 shows the Composition Editor view for the Processing window.

Figure 148. Composition Editor View: ItsProcessingWindow

• Part assembly

None

• Public interface

None

• Used in part

− ItsCspSampleLogonWindow
− ItsCspSampleCustomerListWindow
− ItsCspSampleCustomerWindow
− ItsCspSampleNewCustomerWindow

Chapter 8. Implementation Walkthrough 137

• Superclass of

None

• Class definition

Figure 149 shows the class definition for the Processing window.

AbtAppBldrView subclass: #ItsProcessingWindow
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 149. Class Definition: ItsProcessingWindow

• Scripts

None

• Event trace

None

• Special comments

As a general recommendation for a client/server application, the client
should start requests to the server in background whenever possible. An
OS/2 client can use the multitasking features of the operating system and
start a separate thread for each request to the server, for example.

The distributed presentation model and the use of EHLLAPI as the
communication protocol have some restrictions. The main restriction is the
number of parallel sessions between the client and the server. Compared to
other communication protocols, for example, APPC, which can handle
several parallel sessions between a client and a server, this EHLLAPI
restriction was the bottleneck in our client/server application.

The requests had to be serialized, and we had to work step-by-step with the
EHLLAPI application without using host application functions in parallel.

Our recommendation is to give the user visual feedback whenever the host
application is working in the background. The processing window is like a
GUI implementation of the system sign in the operator interaction area of the
emulation window. In addition, while the EHLLAPI session is busy, the
controls, such as push buttons and menus, from which the user can start
requests to the server should be disabled for any user interaction.

Implementing functions to prevent the user from starting a host request while
the session is busy does not mean that the GUI application does not allow
the user to work with another PWS application in parallel. Any request or
task other than an EHLLAPI request is allowed during this time.

8.8 3270 Communication SideInfo
Following our design for the sample application, we need a communication part
that handles all communication related aspects. This is a model part that
provides routing information for the communication protocol, such as the session
ID or a transaction code.

• Part name

Its3270CommunicationSideInfo

138 Building GUIs

• Category

Nonvisual, abstract part

• Description

This abstract part encapsulates general information about the host
communication. In our case it contains general information related to the
EHLLAPI protocol.

The implementation provides a global Abt3270Terminal part and
Abt3270Screen part that can be torn off in the Composition Editor. The
torn-off terminal and screen always know their session ID. We defined the
terminal and the screen as class variables to be able to use them like global
variables.

In addition to being stored in the global terminal and screen, the session ID
is stored separately in a class variable. The class variable can be used in
attribute-to-attribute connections to set the session ID of separate screen or
terminal parts in the Composition Editor.

To migrate our sample application to another communication protocol, we
would either replace the information in the SideInfo part with specific
information for the new communication protocol or replace the entire part
with another similar part.

• Composition Editor view

None

• Part assembly

The part assembly is not shown in the Composition Editor for this part. This
part contains an Abt3270Terminal part, an Abt3270Screen part, and a
variable (session ID). The assembly of the SideInfo part can be seen in the
tear-off selection of the part. This same assembly approach is used in the
implementation of the Abt3270Screen part, which contains an
Abt3270Terminal part as an instance variable.

• Public interface

Figure 150 on page 140 shows the public interface for the 3270
Communication SideInfo part.

Chapter 8. Implementation Walkthrough 139

Figure 150. Public Interface: Its3270CommunicationSideInfo

• Superclass of

Figure 151 shows the inheritance hierarchy for the 3270 Communication
SideInfo part.

Figure 151. Inheritance Hierarchy: Its3270CommunicationSideInfo

• Class definition

140 Building GUIs

Figure 152 shows the class definition for the 3270 Communication SideInfo
part.

AbtAppBldrPart subclass: #Its3270CommunicationSideInfo
instanceVariableNames: ′ ′
classVariableNames: ′ Screen SessionId Terminal ′
poolDictionaries: ′ ′

Figure 152. Class Definition: Its3270CommunicationSideInfo

• Scripts

Table 15 shows the scripts for the 3270 Communication SideInfo part.

Table 15. Scripts: 3270 Communication SideInfo

Method Description

initializeTerminal:
aSessionIdCharOrString

Initializes the session ID screen and terminal variables with the
character passed as parameter. Each time the 3270 Communication
SideInfo part is added to another part in the Composition Editor, a
new instance is created. To keep all 3270 Communication SideInfo
instances in our application synchronized we must inform all
instances when the session ID is changed or initialized. This is done
by executing the class basicAllInstances do: method. This class
method takes a while to complete.

isSessionIdChangedWith:
aSessionIdCharOrString

Compares the old session ID with the new ID and returns the result of
the comparison (true or false).

screen Returns the value of the Screen class variable.

terminal Returns the value of the Terminal class variable.

sessionId Returns the value of the SessionId class variable.

sessionId:
aSessionIdCharOrString

Saves the parameter value in the SessionId class variable.

Figure 153 shows the initializeTerminal method.

initializeTerminal: aSessionIdCharOrString

Terminal := Abt3270Terminal new.
 Screen := Abt3270Screen new.

(self isSessionIdChangedWith: aSessionIdCharOrString) ifTrue:
[self class basicAllInstances do:

[:each |
each sessionId: aSessionIdCharOrString.

].
].

self signalEvent: #Terminal.
self signalEvent: #Screen.

Figure 153. Method: init ial izeTerminal

Figure 154 on page 142 shows the isSessionIdChangedWith: method.

Chapter 8. Implementation Walkthrough 141

isSessionIdChangedWith: aSessionIdCharOrString

| firstCharacter |

aSessionIdCharOrString isCharacter
ifTrue: [firstCharacter := aSessionIdCharOrString]
ifFalse: [firstCharacter := aSessionIdCharOrString first].

^(firstCharacter ∼ = SessionId).

Figure 154. Method: isSessionIdChangedWith:

Figure 155 shows the screen method.

screen

Screen isNil ifTrue:
[Screen := Abt3270Screen new].

^Screen.

Figure 155. Method: screen

Figure 156 shows the sessionId method.

sessionId

SessionId isNil ifTrue:
[SessionId := $A.]. ″default SessionId″

^SessionId.

Figure 156. Method: sessionId

Figure 157 shows the sessionId: method.

sessionId: aSessionIdCharOrString

aSessionIdCharOrString isCharacter
ifTrue: [SessionId := aSessionIdCharOrString]
ifFalse: [SessionId := aSessionIdCharOrString first].

(self terminal) shortSessionID: SessionId.
(self screen) shortSessionID: SessionId;
settleTime: 1.

self signalEvent: #SessionId
with: aSessionIdCharOrString.

self signalEvent: #Terminal.
self signalEvent: #Screen.

Figure 157. Method: sessionId:

Figure 158 on page 143 shows the terminal method.

142 Building GUIs

terminal

Terminal isNil ifTrue:
[Terminal := Abt3270Terminal new].

^Terminal.

Figure 158. Method: terminal

• Event trace

None

• Special comments

We used the tear-off possibility for the terminal part in most cases for our
sample application. In some situations we connected the SessionId attribute
of the SideInfo part to a separate Abt3270Terminal part to set its session ID.

The initializeTerminal method is called from the logon window. When the
session ID changes, all 3270 Communication Sideinfo part instances in our
application must be informed of the change. In this way, the entire
application works with the specified session ID. We provided A as the
default session ID.

How to Use Class Variables in Parts

VisualAge provides a mapping between attributes in the public interface and
instance variables of the Smalltalk class. Class variables are not directly
connected to the public interface. We have to implement the mapping
between a class variable and a public interface attribute with get and set
methods. Also, if we define class variables as global variables for all
instances of a class, we have to find a way to inform all instances when the
class variable changes. This can be achieved as follows:

self class basicAllInstances do:
[:each |

each sessionId: aSessionIdCharOrString.
].

8.9 Sample Communication SideInfo
This part is a specialization of the 3270 Communication SideInfo part. It is used
in the CSP sample application to provide specific EHLLAPI-related information.
Following the principle of model-view separation, this part is used as a subpart
in several nonvisual parts of the sample application.

• Part name

ItsCspSampleCommunicationSideInfo

• Category

Nonvisual part

• Description

This part contains side information for communication routing in a dictionary.
In our case, it contains transaction codes for the different host transactions
we front ended with our GUI application. The advantage is that this

Chapter 8. Implementation Walkthrough 143

communication routing information can be maintained centrally in this
dictionary.

• Composition Editor view

None

• Part assembly

None

• Public interface

Figure 159 shows the public interface for the Sample Communication
SideInfo part.

Figure 159. Public Interface: ItsCspSampleCommunicationSideInfo

• Used in part

− ItsCspSampleLogonWindow
− ItsCspSampleCustomer
− ItsCspSampleCustomerListModel

• Superclass of

None

• Class definition

Figure 160 on page 145 shows the class definition for the Sample
Communication SideInfo part.

Its3270CommunicationSideInfo subclass: #ItsCspSampleCommunicationSideInfo
instanceVariableNames: ′ ′
classVariableNames: ′ TransactionDirectory ′
poolDictionaries: ′ ′

Figure 160. Class Definition: ItsCspSampleCommunicationSideInfo

144 Building GUIs

• Scripts

Table 16 shows the scripts for the Sample Communication SideInfo part.

Table 16. Scripts: Sample Communication SideInfo

Method Description

initializeTransactionDirectory
Puts Tx codes for each operation into the class variable
TransactionDirectory.

readTransactionDirectoryAt:
aSymbol

Reads Tx codes from class variable TransactionDirectory
with key.

Figure 161 shows the initializeTransactionDirectory method.

initializeTransactionDirectory

TransactionDirectory := IdentityDictionary new.

TransactionDirectory at: #AddCustomer put: ′ STLC′ .
TransactionDirectory at: #DeleteCustomer put: ′ STLC′ .
TransactionDirectory at: #ReadCustomer put: ′ STLC′ .
TransactionDirectory at: #UpdateCustomer put: ′ STLC′ .
TransactionDirectory at: #ReadCustomerList put: ′ STLC′ .

Figure 161. Method: initializeTransactionDirectory

Figure 161 shows the readTransactionDirectoryAt: method.

readTransactionDirectoryAt: aSymbol

^(TransactionDirectory at: aSymbol).

Figure 162. Method: readTransactionDirectoryAt:

• Event trace

None

• Special comments

We did not use the TransactionDirectory in our application. The transaction
code to update, list, and delete customers is hardcoded, which makes it
easier to understand the code for beginners. For real customer applications
we recommend using the TransactionDirectory to keep all application
parameters in one place. The best implementation is to keep the application
parameters in an external file that is read during application initialization.
This approach allows maintenance of the parameters to be done externally
without any code change.

Chapter 8. Implementation Walkthrough 145

How to Fill a Dictionary with Values

The following code can be used to fill a dictionary with values:

TransactionDirectory := IdentityDictionary new.

TransactionDirectory at: #AddCustomer put: ′ STLA′ .
TransactionDirectory at: #DeleteCustomer put: ′ STLB′ .
TransactionDirectory at: #ReadCustomer put: ′ STLC′ .
TransactionDirectory at: #UpdateCustomer put: ′ STLD′ .
TransactionDirectory at: #ReadCustomerList put: ′ STLE′ .

8.10 DB2 Sample Logon Window
This part is the logon window for the DB2 sample application.

• Part name

ItsDb2SampleLogonWindow

• Category

Composite visual part

• Description

This part is the same as the CSP sample logon window part described in 8.6,
“CSP Sample Logon Window” on page 132. Because we experimented with
different approaches during our project this part was not implemented
exactly as the CSP sample logon window part.

The GUI front end for the DB2 sample application is not implemented.
Therefore, we do not explain the implementation of this part in detail.

8.11 CSP Sample Main Window
After a successful logon to the CSP sample application the main window of the
application is opened. This part contains the main window for the sample
application. From the main window users can start all functions of the
application. This window has a parent relationship to all windows that are
opened from here.

• Part name

ItsCspSampleMainWindow

• Category

Visual composite part

• Description

This part has in its primary window a container with icon gadgets.
Double-clicking on an icon starts an application function. The same functions
can also be started from the action bar Customer menu item.

The windows that are shown after a function is started are added as parts to
this main part. The windows are the customer selection criteria window and
the add a new customer window. The host window icon invokes a script that
provides the function to jump to the emulation window of the selected
session.

146 Building GUIs

One decision to be made is how the windows that can be opened should be
related to the main window:

− The openWidget action opens a window that is independent of the main
window. Therefore, if the main window is minimized, the opened window
remains open. However, if the main window is closed, the opened
window is also closed.

− The openOwnedWidget action opens a window that is tightly related to
the main window. Therefore, if the main window is minimized or closed,
the opened window is also minimized or closed.

Another decision to be made is whether the opened window should allow
multiple instances or not. Multiple instance windows are always
independent of the main window, and the application has to provide the logic
to close the window instances when the application main window is closed.
To create single instance windows, a window can be drawn in the same
Composition Editor view, or it can be implemented as a separate part and
added as a subpart to the Composition Editor of another window. To create
multiple instance windows, we can either write a script or use the VisualAge
object factory part in the Composition Editor.

We decided to implement the New Customer window and the Customer List
Selection window as single instance windows that are opened using the
openWidget action. We added those two windows as subparts to the
Composition Editor.

• Composition Editor view

Figure 163 and Figure 164 on page 148 show the Composition Editor view
for the CSP Sample Main window.

Figure 163. Composition Editor View: ItsCSPSampleMainWindow (Part 1)

Chapter 8. Implementation Walkthrough 147

Figure 164. Composition Editor View: ItsCSPSampleMainWindow (Part 2)

• Part assembly

Figure 165 shows the part assembly for the CSP Sample Main window.

Figure 165. Part Assembly: ItsCSPSampleMainWindow

• Public interface

148 Building GUIs

None

• Used in part

• Its3270Applications

• Superclass of

None

• Class definition

Figure 166 shows the class definition for the CSP Sample Main window.

AbtAppBldrView subclass: #ItsCspSampleMainWindow
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 166. Class Definition: ItsCSPSampleMainWindow

• Scripts

Table 17 shows the scripts for the CSP Sample Main window.

Table 17. Scripts: CSP Sample Main Window

Method Description

showHostWindow
Jumps to the emulation window with the session id stored in the
communication side information (SideInfo) part.

Figure 167 shows the showHostWindow method.

showHostWindow

| aTerminal |

aTerminal := self partAttributeValue:
#(#′ Terminal of CommunicationSideInfo′ #self).

aTerminal windowRestore;
windowJump.

Figure 167. Method: showHostWindow

• Event trace

Table 18 shows the event trace for the CSP Sample Main window.

Table 18 (Page 1 of 2). Event Trace: CSP Sample Main Window

User Action Sequence of Executed Connections

Double-click on Host
Window icon

(1) defaultAction >> showHostWindow (hook)

Double-click on Customer
List icon

(2) defaultAction >> openWidget (CustomerListSelectionWindow)

Chapter 8. Implementation Walkthrough 149

Table 18 (Page 2 of 2). Event Trace: CSP Sample Main Window

User Action Sequence of Executed Connections

Click on List Customer
menuItem

(2) clicked >> openWidget (CustomerListSelectionWindow)

Double-click on New
Customer icon

(3) cl icked >> openWidget (NewCustomerWindow)

Click on Add Customer
menuItem

(3) cl icked >> openWidget (NewCustomerWindow)

Click on Exit menuItem (4) clicked >> closeWidget (Customer Application Main Window)

Press OK push button on
CustomerListSelection
dialog

pbOkPressed >> StartSelectionWith: (NameFrom, NameTo, Number)

• Special comments

We provide a script to jump to the host session to which the application is
connected in this part. The session ID is found in a Sample Communication
SideInfo part.

How to Jump to a Host Session

The following code implements the function to jump to the host session:

| aTerminal |

aTerminal := self partAttributeValue:
#(#′ Terminal of CommunicationSideInfo′ #self).

aTerminal windowRestore;
windowJump.

A window can be created and opened as a single instance or several times
as multiple instances.

How to Create a Single Instance Window

If a window should exist as a single instance in an application, we can
add the window as a subpart to another window and draw a connection
to open the window. Using a subpart to add a window is good
implementation style. However, we can achieve the same result if the
second window is drawn in the Composition Editor of another window.

150 Building GUIs

How to Create Multiple Instance Windows

To create multiple instances of a window, we can either use an object
factory part or write a script.

When using the object factory, we have to make an event-to-action
connection (1) to the new action of the factory part. The object factory
type must be set to the window part to be created. The window part will
become an instance variable of the object factory. We tear off the
instance variable from the object factory and make a second
event-to-action connection from the same event as connection (1) to the
openWidget action of the instance variable.

The code to achieve the same result with a script looks as follows:

createWindowInstance: aWindowPartNameString

| classView |

classView:= Smalltalk at: (aWindowPartNameString asSymbol).
classView newPart openWidget.

8.12 Sample Customer List Selection Window
We decided to have a single instance of the customer list selection window in
the application. This window is developed as a separate part and used as a
subpart in the main window.

• Part name

ItsCspSampleCustomerListSelectionWindow

• Category

Visual composite part

• Description

This is a part on the view side according to the model-view separation
design. It does not know anything about communication; it is communication
independent. It is a dialog where users can enter their selection criteria to
be passed as attributes through the public interface. These attributes can be
used as parameters for the StartSelectionWith action that reads the customer
list data from the host application.

• Composition Editor view

Figure 168 on page 152 shows the Composition Editor view for the Customer
List Selection window.

Chapter 8. Implementation Walkthrough 151

Figure 168. Composition Editor View: ItsCspSampleCustomerListSelectionWindow

• Part assembly

Figure 169 shows the part assembly for the Customer List Selection window.

Figure 169. Part Assembly: ItsCspSampleCustomerListSelectionWindow

• Public interface

Figure 170 on page 153 shows the public interface for the Customer List
Selection window.

152 Building GUIs

Figure 170. Public Interface: ItsCspSampleCustomerListSelectionWindow

• Used in part

ItsCspSampleMainWindow

• Superclass of

None

• Class definition

Figure 171 shows the class definition for the Customer List Selection
window.

AbtAppBldrView subclass: #ItsCspSampleCustomerListSelectionWindow
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 171. Class Definition: ItsCspSampleCustomerListSelectionWindow

• Scripts

Table 19 shows the scripts for the Customer List Selection window.

Table 19. Scripts: Customer List Selection Window

Method Description

pbOkPressed
Checks for nonblank selection criteria and raises
SelectionPbOkPressed event if selection is made. Shows a message
box if selection is blank.

Figure 172 on page 154 shows the pbOkPressed method.

Chapter 8. Implementation Walkthrough 153

pbOkPressed

| sizeNameFrom sizeNameTo sizeNumber |

sizeNameFrom:= (self partAttributeValue: #(#efFromName #string))
trimBlanks size.

 sizeNameTo:= (self partAttributeValue: #(#efToName #string))
trimBlanks size.

 sizeNumber:= (self partAttributeValue: #(#efNumber #string))
trimBlanks size.

 ((sizeNameFrom=0
and: [sizeNameTo=0])
and: [sizeNumber=0]) ifTrue:

[CwMessagePrompter
errorMessage: ′ All fields are empty. No valid selection !!′ .

^self.
].

^self signalEvent: #SelectionPbOkPressed.

Figure 172. Method: pbOkPressed

• Event trace

Table 20 shows the event trace for the Customer List Selection window.

Table 20. Event Trace: Customer List Selection Window

User Action or Event Sequence of Executed Connections

Event: openedWidget
(initialization)

openedWidget >> setFocus (NameFrom entry f ield)

User action: click on OK
push button

pbOkPressed (OkCancelHelpForm) >> pbOkPressed (hook)

User action: press Enter
on NameFrom entry field

defaultActionRequested >> pbOkPressed (hook)

User action: press Enter
on NameTo entry field

defaultActionRequested >> pbOkPressed (hook)

User action: press Enter
on Number entry field

defaultActionRequested >> pbOkPressed (hook)

User action: click on
Cancel push button

pbCancelPressed >> closeWidget

• Special comments

We decided to make the link to the customer list in the application main part.
Another way would be to add the customer list to this part. This is just
another way to encapsulate things, but the advantage of our implementation
is the granularity of the parts. To provide better part reusability, it is better
to have many basic parts instead of a few composite parts.

154 Building GUIs

How to Provide Entry Fields in the Public Interface

Perform the following sequence to pass the contents of the entry fields to the
public interface as attributes:

 1. Add a variable (Option Add Variable) for each entry field or go to the
entry field and tear off #string to create a variable of data type string or
#object to create a variable of another data type.

 2. Define a name for or rename the variable to make it self-explanatory
such as Number or NameFrom, and define the class name as the name
of the data type class (String, Integer, Float) you want to provide.

 3. Connect the variable (#self) to the entry field (#string) if the data type is
string or to #object for another data type. This connection is done
implicitly, if the variable is torn off from the entry field.

 4. Select the variables (all together) in the Composition Editor and select
Add to interface from the context menu.

 5. Go to the public interface editor and select the attributes tab. Select
Added Attributes to verify and apply the definition.

8.13 Sample Customer List
This part is one of the model parts of the application. It provides methods to
access the host through EHLLAPI and creates instances of customer list windows
to show the result of the list request in a window.

• Part name

ItsCspSampleCustomerListModel

• Category

Nonvisual composite part

• Description

This part is the model representation of the customer list following the
model-view separation design. The list selection criteria are passed to this
part as parameters to an action. The implementation of this part is an
example of extensive use of visual programming in a nonvisual part. We
tried to define as much of the logic as possible with visual programming in
this part. At first sight, the Composition Editor view of the part might look a
little confusing. To understand the defined logic, it is important to follow the
event trace described in Table 22 on page 162.

The decision as to how much of the program logic should be built visually
and how much should be provided through scripts depends on developer
preference and coding style. From the software engineering point of view, a
mix of visual programming and scripts allows a better structuring of the
application logic, and the code is easier to understand and maintain as
compared to a complex network of visual programming. The issue is to find
the balance between visual programming and scripts when defining the logic
of a part. Our implementation of this part is not a good example of the right
balance.

• Composition Editor view

Chapter 8. Implementation Walkthrough 155

Figure 173 shows the Composition Editor view for the CustomerListModel
part.

Figure 173. Composition Editor View: ItsCspSampleCustomerListModel

• Part assembly

Figure 174 shows the part assembly for the CustomerListModel part.

Figure 174. Part Assembly: ItsCspSampleCustomerListModel

• Public interface

Figure 175 on page 157 shows the public interface for the
CustomerListModel part.

156 Building GUIs

Figure 175. Public Interface: ItsCspSampleCustomerListModel

Note: The StartSelection(*) event and the getList(*) action are used only
within this part to draw event-to-action connections in the
Composition Editor. They are not used in other parts and could be
called private in the public interface. Of course, calling something
private in the public interface is a bit contradictory, but in this specific
situation of visual programming, it is very useful.

• Used in part

ItsCspSampleMainWindow

• Superclass of

None

• Class definition

Figure 176 shows the class definition for the CustomerListModel part.

AbtAppBldrPart subclass: #ItsCspSampleCustomerListModel
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 176. Class Definition: ItsCspSampleCustomerListModel

• Scripts

Table 21 on page 158 shows the scripts for the CustomerListModel part.

Chapter 8. Implementation Walkthrough 157

Table 21. Scripts: CustomerListModel

Method Description

pressEnterandWaitfor
CursorPositionChanged

Enters a blank string and waits until the cursor position is changed
from position 1 @ 1.

readCustomerList
AndBuildCollection

Loops through the whole list on the host screen using PF8 and
returns the result in a sorted collection. The loop is stopped based
on the message “No more rows” on the host screen. After finishing
collecting the rows in the loop, the CustomerListReady and
CustomerListRefreshed events are raised. This method is defined in
the public interface as a getList action. It is used in an
event-to-action connection within this part.

refreshCustomerWith:
aNameFromString and:
aNameToString and:
aNumberFromString

Goes through the sequence of host screens and collects the items in
a sorted collection. The complete logic for this function is coded in
this script. There is no complementary logic on the Composition
Editor. The method is defined as a refreshList action in the public
interface.

sortListByName Sorts the CustomerList variable in the Composition Editor by name.

sortListByNumber Sorts the CustomerList variable in the Composition Editor by number.

startSelectionWith:
aNameFromString and:
aNameToString and:
aNumberFromString

Puts the parameters into the torn-off input fields of the screen part
and raises the StartSelection event.

startTransaction
Starts the STLC transaction. This is hardcoded and does not use the
Communication SideInfo transaction dictionary.

Figure 177 shows the pressEnterandWaitforCursorPositionChanged method.

pressEnterandWaitforCursorPositionChanged

| aTerminal |

aTerminal := self partAttributeValue:
#(#′ terminal of 3270 Screen′ #self).

aTerminal enter: ′ ′
andWaitForCursorPositionToChangeFrom: 1 @ 1.

Figure 177. Method: pressEnterandWaitforCursorPositionChanged

Figure 178 on page 159 shows the readCustomerListAndBuildCollection
method.

158 Building GUIs

readCustomerListAndBuildCollection

| anArray aCollection aTerminal doLoop |

aTerminal := self partAttributeValue:
#(#′ terminal of 3270 Screen′ #self).

aCollection := SortedCollection sortBlock:
[:a :b |

((a copyFrom: 9 to: 30) trimBlanks)
<=
((b copyFrom: 9 to: 30) trimBlanks)].

doLoop := 1.

[doLoop = 1] whileTrue:
[

doLoop := 0.
anArray := aTerminal textFrom: 5 @ 4 to: 79 @ 16.

anArray do:
[:each | (each trimBlanks size = 0) ifFalse:

[aCollection add: each].
].

((anArray at: 13) trimBlanks size = 0) ifFalse:
[

aTerminal keyPF:8.
self pressEnterandWaitforCursorPositionChanged.
((aTerminal stringAt: 1@21 for: 77) abrIncludesString:
′ No more rows′) ifFalse:
[doLoop := 1.].

].
].

self partAttributeValue:
#(#TempCustomerList #self) put: aCollection.

self signalEvent: #CustomerListReady.
self signalEvent: #CustomerListRefreshed.

aTerminal keyPF:3.

^aCollection.

Figure 178. Method: readCustomerListAndBuildCollection

Figure 179 on page 160 shows the refreshCustomerWith: and: and: method.

Chapter 8. Implementation Walkthrough 159

refreshCustomerWith: aNameFromString
and: aNameToString and: aNumberFromString

| anArray aCollection aTerminal doLoop aScreenRecord aString |

aTerminal := self partAttributeValue: #(#′ terminal of 3270 Screen′ #self).

aCollection := SortedCollection sortBlock:
[:a :b |

((a copyFrom: 9 to: 30) trimBlanks)
<=
((b copyFrom: 9 to: 30) trimBlanks)].

self startTransaction.

aScreenRecord := (aTerminal buildFieldDefsOfType: ′ Unprotected′)
newRecord.

aTerminal getStringsIntoFieldRecord: aScreenRecord.

aScreenRecord at: #FieldNumber2 put: (aNumberFromString).
aScreenRecord at: #FieldNumber3 put: (aNameFromString).
aScreenRecord at: #FieldNumber4 put: (aNameToString).
aTerminal putStringsFromFieldDefs: aScreenRecord.

self pressEnterandWaitforCursorPositionChanged.

aString := ((aTerminal stringAt: 1@21 for: 77) trimBlanks).
(aString isEmpty) ifFalse:
[

(aString abrIncludesString: ′ No rows meet′) ifTrue:
[

CwMessagePrompter message: aString.
aTerminal keyPF:3.
^aCollection.

].
].

doLoop := 1.

[doLoop = 1] whileTrue:
[

doLoop := 0.
anArray := aTerminal textFrom: 5@4 to: 79@16.

anArray do:
[:each | (each trimBlanks size = 0) ifFalse:

[aCollection add: each].
].

((anArray at: 13) trimBlanks size = 0) ifFalse:

Figure 179 (Part 1 of 2). Method: refreshCustomerWith: and: and:

160 Building GUIs

[
aTerminal keyPF:8.
self pressEnterandWaitforCursorPositionChanged.
((aTerminal stringAt: 1@21 for: 77) abrIncludesString:
′ No more rows′) ifFalse:

[doLoop := 1.].
].

].

self signalEvent: #CustomerListRefreshed.

aTerminal keyPF:3.

^aCollection.

Figure 179 (Part 2 of 2). Method: refreshCustomerWith: and: and:

Figure 180 shows the sortListByName method.

sortListByName

| aSortedCollect |

aSortedCollect := self partAttributeValue: #(#CustomerList #self).

aSortedCollect sortBlock: [:a :b |
((a copyFrom: 9 to: 30) trimBlanks)
<=
((b copyFrom: 9 to: 30) trimBlanks)].

^self partAttributeValue: #(#CustomerList #self) put: aSortedCollect.

Figure 180. Method: sortListByName

Figure 181 shows the sortListByNumber method.

sortListByNumber

| aSortedCollect |

aSortedCollect := self partAttributeValue: #(#CustomerList #self).

aSortedCollect sortBlock: [:a :b |
(a copyFrom: 1 to: 7)
<=
(b copyFrom: 1 to: 7)].

^self partAttributeValue: #(#CustomerList #self) put: aSortedCollect.

Figure 181. Method: sortListByNumber

Figure 182 on page 162 shows the startSelectionWith: and: and: method.

Chapter 8. Implementation Walkthrough 161

startSelectionWith: aNameFromString
and: aNameToString and: aNumberFromString

self partAttributeValue:
#(#′ FieldNumber2 of inputFields of 3270 Screen′ #self)
put: aNumberFromString.

self partAttributeValue:
#(#′ FieldNumber3 of inputFields of 3270 Screen′ #self)
put: aNameFromString.

self partAttributeValue:
#(#′ FieldNumber4 of inputFields of 3270 Screen′ #self)
put: aNameToString.

self signalEvent: #StartSelection.

Figure 182. Method: startSelectionWith: and: and:

Figure 183 shows the startTransaction method.

startTransaction

| aTerminal |

aTerminal := self partAttributeValue:
#(#′ terminal of 3270 Screen′ #self).

 aTerminal keyHome;
enterCommand: ′ STLC′ .

Figure 183. Method: startTransaction

• Event trace

Table 22 shows the event trace for the CustomerListModel part.

Table 22 (Page 1 of 2). Event Trace: CustomerListModel

Event Sequence of Executed Connections

event: StartSelection
raised from
StartSelectionWith:
(NameFrom, NameTo,
Number), which is called
in the customer main
window as a connection
between
ListSelectionWindow and
CustomerList

• (1) event: StartSelection >> terminal enter: ′STLC′
andWaitForString: ′TCL0M01′

• (2) event: StartSelection >> screen putData (the fields are fil led
in the StartSelectionWith method called first)

• (3) event: StartSelect ion >>
pressEnterAndWaitForCursorPositionChanged (hook)

• (4) event: StartSelection >> terminal execute: stringAt: 21@1
for: 77 and put result in StringMessagebox (public interface
attribute messageString)

• (5) event: StartSelection >> open (MessageboxWindow)

event: ErrorNotFound
raised from
MessageboxWindow

(6) event: ErrorNotFound >> getList (hook) (this method is in the
public interface and is mapped to the script
readCustomerListAndBuildCollection)

162 Building GUIs

Table 22 (Page 2 of 2). Event Trace: CustomerListModel

Event Sequence of Executed Connections

event: ErrorFound raised
from MessageboxWindow

(7) event: ErrorFound >> terminal keyPF:3 (to end the transaction)

event:
CustomerListReady
raised from script
readCustomerList
AndBuildCollection

• (8) event: CustomerListReady >> new CustomerWindowsFactory

• result of new >> openWidget (CustomerListWindow)

• Special comments

How to Use a Factory to Create Multiple Instances

You can use a factory to create multiple instances of customer windows
as follows:

• Add a factory part to the Composition Editor.

• Define the instance class name.

• Connect variables on the Composition Editor to the instance variables
provided in the public interface of the class for which you defined the
factory. In our example, we connect the NameFrom, NameTo,
Number, TempCustomerList (SortedCollection), and the Pointer to the
CustomerList part to the factory.

• Add another variable that has the class (or data type) of the factory
instances to the Composition Editor.

• Connect instance (factory) >> self (variable) to put the result into
this temporary variable.

• Connect the follow-on logic to the variable. In our example, the
variable is a visual part and we send the openWidget message to it.

How to Write Data to the Terminal from a Script

A very efficient way of writing directly to the presentation space is the
following:

aScreenRecord :=
(aTerminal buildFieldDefsOfType: ′ Unprotected′) newRecord.

aScreenRecord at: #FieldNumber2 put: (aNumberFromString).
aScreenRecord at: #FieldNumber3 put: (aNameFromString).
aScreenRecord at: #FieldNumber4 put: (aNameToString).

aTerminal putStringsFromFieldDefs: aScreenRecord.

First, we built a record with the field definitions of the unprotected fields
found in the actual presentation space. Then, we put the contents into
the fields. Last, we wrote the whole record to the terminal presentation
space.

Chapter 8. Implementation Walkthrough 163

8.14 String Messagebox
This part is used in the CustomerListModel part to show a message box with an
error string passed to it through an attribute-to-attribute connection to the
messageString attribute.

• Part name

ItsStringMessagebox

• Category

Basic nonvisual part

• Description

This is a part for a customized message box. It takes a string as a
parameter and, depending on the string contents, brings up a message box
with the contents of the parameter string and raises the errorFound event. If
the string is blank or is not an error string, no message box is shown, and
the errorNotFound event is raised.

This part demonstrates how to implement a message box that can be used
in the Composition Editor for visual programming.

• Composition Editor view

Figure 184 shows the Composition Editor view for the String Messagebox
part.

Figure 184. Composition Editor View: ItsStringMessagebox

The messageString variable is added to the public interface as an attribute.

• Part assembly

None

• Public interface

164 Building GUIs

Figure 185 shows the public interface for the String Messagebox part.

Figure 185. Public Interface: ItsStringMessagebox

• Used in part

Customer List

• Superclass of

None

• Class definition

Figure 186 shows the class definition for the String Messagebox part.

AbtAppBldrPart subclass: #ItsStringMessagebox
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 186. Class Definition: ItsStringMessagebox

• Scripts

Table 23 shows the scripts for the String Messagebox part.

Table 23. Scripts: String Messagebox

Method Description

open
Checks the messageString passed by the public interface as an
attribute and decides whether or not a messagebox should be shown.
The ErrorFound or ErrorNotFound events are raised accordingly.

Figure 187 on page 166 shows the open method.

Chapter 8. Implementation Walkthrough 165

open

| aString |

aString := self partAttributeValue: #(#messageString #self).
aString := aString trimBlanks.

″no MessageString″
(aString isEmpty) ifTrue:

[^self signalEvent:#errorNotFound.].

″MessageString: Single item selection list ...″
(aString abrIncludesString: ′ Single item selection list′) ifTrue:

[^self signalEvent:#errorNotFound.].

″MessageString: Invalid function key,(caused by timing problems)″
(aString abrIncludesString: ′ Invalid function key′) ifTrue:

[^self signalEvent:#errorNotFound.].

″otherwise″
CwMessagePrompter message: aString.
^self signalEvent:#errorFound.

Figure 187. Method: open

• Event trace

None

• Special comments

Instead of passing the messagestring as a parameter directly to the method,
we passed the string as an attribute to the public interface and used it in the
Composition Editor of the nonvisual part.

8.15 Customer List Window
After the CustomerListModel part reads the data from the host application, it
creates a Customer List Window instance using an object factory part. The
Customer List Window is a window with a list box where the selected customers
are listed as strings of customer number and name. By default, the customer
list is sorted by number. That is the only sort order the existing host application
provides. The GUI application provides the additional functionality of sorting by
name entirely on the workstation. No communication to the host is necessary to
do the sort.

Another added function that the GUI application provides is a local subselect
with a search string in the customer list. The result of this subselect is shown in
a separate window.

The refresh function can be used to refresh the information in the customer list
from the host application. The customer list remembers the former selection
criteria, because they are stored in variables defined in both the Composition
Editor and the public interface. In the refresh dialog, the user can change the
selection criteria.

166 Building GUIs

The GUI application supports multiple instances of Customer List Windows.
Multiple Customer List Windows can be opened by providing new selection
criteria in the customer list selection window.

• Part name

ItsCspSampleCustomerListWindow

• Category

Composite visual part

• Description

The implementation of this visual part is a typical example of visual
programming. The visual programming approach is very powerful,
especially for window handling and the passing of attributes with connections
from one part to another. This part does not have many scripts.

We decided to keep the Customer List Window together with the subdialogs
to find a string and to refresh the list when designing the parts. The two
dialog windows are single instance windows and closely related to the
context of the Customer List Window. Therefore, there is not much potential
to reuse those windows, and they can be implemented in the Customer List
Window part.

There is nothing that prevents dividing this part into three separate parts,
one for each window. The public interface for each part would need to be
defined to allow for synchronization of the list boxes in the Customer List
and Find in Customer List windows.

• Composition Editor view

We show the different aspects of the visual program definition in different
pictures to reduce the complexity of the Composition Editor view (see
Figure 188 on page 168 through Figure 190 on page 169). If we open the
Composition Editor with this part, the three pictures are all in the same view.

Figure 188 on page 168 shows the visual program definition required to
show the ordered collection of customers in the list box and to read the
details of a selected customer with an event-to-action connection to the
nonvisual part customer.

Chapter 8. Implementation Walkthrough 167

Figure 188. Composition Editor View: ItsCspSampleCustomerListWindow (Part 1)

Figure 189 shows the visual programming required to open the Find in
Customer List Window to start a subselection and read the details of a
selected customer in the subselection list.

Figure 189. Composition Editor View: ItsCspSampleCustomerListWindow (Part 2)

Figure 190 on page 169 shows the window to refresh the contents of the list
box in the Customer List window. The connections are made to the same
customer list model object that created the instance of this Customer List
window. The pointer to the model object is stored in the Pointer to
CustomerList variable, which is a public interface attribute and is filled

168 Building GUIs

during the instantiation with the factory in the Customer List part. The same
approach to provide values is used for the NameFrom, NameTo, and Number
variables that are connected to the entry fields.

Figure 190. Composition Editor View: ItsCspSampleCustomerListWindow (Part 3)

• Part assembly

Figure 191 shows the part assembly for the Customer List Window part.

Figure 191. Part Assembly: ItsCspSampleCustomerListWindow

• Public interface

Chapter 8. Implementation Walkthrough 169

Figure 192 shows the public interface for the customer list window part.

Figure 192. Public Interface: ItsCspSampleCustomerListWindow

• Used in part

None (created dynamically by the factory defined in Customer List)

• Superclass of

None

• Class definition

Figure 193 shows the class definition for the Customer List Window part.

AbtAppBldrView subclass: #ItsCspSampleCustomerListWindow
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 193. Class Definition: ItsCspSampleCustomerListWindow

• Scripts

Table 24 shows the scripts for the Customer List Window part.

Table 24 (Page 1 of 2). Scripts: Customer List Window

Method Description

doLocalSubselect:
searchString

Finds the searchString in the list box and returns a sortedCollection
with the results.

isItemSelected
Tests whether an item is selected and raises the ItemSelected event
if it is.

170 Building GUIs

Table 24 (Page 2 of 2). Scripts: Customer List Window

Method Description

sortListbox
Sorts the contents of the list box by name or by number depending on
the radio button selection and returns the result as a sorted collection
in the list box.

Figure 194 shows the doLocalSubselect: method.

doLocalSubselect: searchString

| destinationCollection sourceCollection |

destinationCollection := OrderedCollection new.

sourceCollection := self partAttributeValue:
#(#′ items of lbCustomerList′ #self).

sourceCollection do: [:each |
(each abrIncludesString: searchString) ifTrue:

[destinationCollection add: each].
].

^destinationCollection.

Figure 194. Method: doLocalSubselect

Figure 195 shows the isItemSelected method.

isItemSelected

| anItem |

anItem := self partAttributeValue: #(#lbCustomerList #selectedItem).

(anItem isNil) ifTrue:
[CwMessagePrompter

errorMessage: ′ No Customer selected !!′ .
^self.

].

^self signalEvent: #ItemSelected.

Figure 195. Method: isItemSelected

Figure 196 on page 172 shows the sortListbox method.

Chapter 8. Implementation Walkthrough 171

sortListbox

| aSortedCollect selectionIndex |

aSortedCollect := self partAttributeValue:
#(#′ items of lbCustomerList′ #self).

selectionIndex := self partAttributeValue:
#(#rbListSortOrder #selectionIndex).

selectionIndex = 1 ifTrue:
[aSortedCollect sortBlock: [:a :b |

((a copyFrom: 9 to: 30) trimBlanks)
<=
((b copyFrom: 9 to: 30) trimBlanks)].

].
selectionIndex = 2 ifTrue:

[aSortedCollect sortBlock: [:a :b |
(a copyFrom: 1 to: 7)
<=
(b copyFrom: 1 to: 7)].

].

^self partAttributeValue: #(#′ items of lbCustomerList′ #self)
put: aSortedCollect.

Figure 196. Method: sortListbox

• Event trace

Table 25 shows part 1 of the event trace for the Customer List Window part.

Table 25. Event Trace: Customer List Window (Part 1)

User Action or Event Sequence of Executed Connections

User action: click on OK
push button

(1) pbOkPressed (OkCancelHelpForm) >> isItemSelected (hook)

Event: ItemSelected from
the hook after OK push
button was pressed

(2) event: ItemSelected >> readNewCustomerWithId: (selectedItem)

User action: double-click
on item in the list box

(3) defaultActionRequested >> readNewCustomerWithId:
(selectedItem)

User action: change the
radio button for the sort
order

(4) selectedItemChanged >> sortListbox (hook)

User action: click on
Cancel push button

(5) pbCancelPressed (OkCancelHelpForm) >> closeWidget

User action: click on
Cancel push button

(6) pbCancelPressed (OkCancelHelpForm) >> destroyPart (because
it was dynamically created)

Table 26 on page 173 shows part 2 of the event trace for the Customer List
Window part.

172 Building GUIs

Table 26. Event Trace: Customer List Window (Part 2)

User Action or Event Sequence of Executed Connections

User action: click on
FindInList... push button

(1) clicked >> openOwnedWidget (Find in CustomerList)

Event: openedWidget
(initialization for the
window)

(2) event: openedWidget >> setFocus (entry field)

User action: press Enter
on entry field

(3) defaultActionRequested >> click (Find push button)

User action: click on Find
push button

(4) clicked >> doLocalSubselect: (entry field) and put result into the
list box

User action: click on item
in the list box to mark the
item

(5) selectedItem (customerListbox) >> selectedItem (findListbox)
(attribute-to-attribute connection)

User action: double-click
on item in the list box to
select and open detail

(6) defaultActionRequested >> readNewCustomerWithId:
(selectedItem)

User action: click on
Cancel push button

(7) clicked (pbCancel) >> closeWidget Find in CustomerList

Table 27 shows part 3 of the event trace for the Customer List Window part.

Table 27. Event Trace: Customer List Window (Part 3)

User Action or Event Sequence of Executed Connections

User action: click on
Refresh List... push
button

(1) clicked >> openOwnedWidget (Refresh CustomerList)

Event: openedWidget
(initialization for the
window)

(2) event: openedWidget >> setFocus (NameFrom entry field)

User action: click on
Refresh push button

• (3) cl icked >> openWidget (HostProcessingWindow)

• (4) clicked >> refreshList (CustomerList action) with NameFrom,
NameTo, and Number as parameters and put the result as items
of the list box collection

• (5) event: CustomerListRefreshed (CustomerList) >>
closeWidget (host processing window)

User action: click on
Cancel push button

(6) clicked >> closeWidget (Refresh CustomerList)

• Special comments

The model-view separation concept requires a solution to link the view
objects to the model objects. In the customer list implementation, the
customer list object exists as a single instance in the application. It creates
new Customer List Windows that must know the model object (customer list).
Therefore, we want to keep a pointer to the model object in the view object.

Chapter 8. Implementation Walkthrough 173

How to Keep a Pointer to a Model Object

• Define a variable in the free form surface of the view object and add
the variable to the public interface.

• During the instantiation of a new view object in the model object,
assign the value #self to the public interface variable of the view
object created with a factory.

Another useful hint is to synchronize two list boxes that show the same
ordered collection as items. In our part, one list box shows all items, and
the other list box shows a subset of items. If we wanted to synchronize the
selection in the two list boxes, that is, the user clicks on an item in one list
box and the same item is selected in the other list box, we would have used
the visual programming described in the box below.

How to Synchronize Selection in Two List Boxes

• To synchronize the selection of the same item when the two list
boxes contain the same items:

Make an attr ibute-to-attr ibute connection #selectedItem >>
#selectedItem between the two list boxes.

• To synchronize the selection of the same index when the two list
boxes contain different items:

Make an attr ibute-to-attr ibute connection #selectionIndex >>
#selectionIndex between the two list boxes.

8.16 Customer
A subpart in the Customer List Window part is the Customer part. The Customer
part is a nonvisual part and belongs to the model side of the application. This
part is responsible for the customer details and provides actions to read, add,
update, and delete the details of a customer. The part is not visible in the
running application, but it is involved in all of the customer detail windows.

• Part name

ItsCspSampleCustomer

• Category

Nonvisual composite part

• Description

Communication to the host in this part is started from the SPOC, that is, the
CICS screen from which the STLC transaction is started to read, add, update,
and delete a customer.

The sequence on the host is the same for all methods that initiate a read,
add, update, or delete function on the host. After the host transaction is
started, the customer number is entered, which brings up a single item list
where we enter the action code (S = read, U = update, D = delete). The
only exception is the method to add a new customer. Because the customer
number is unknown, we select a list of all customers with customer name =
* and enter the action code N on the first item of the list.

174 Building GUIs

We go directly to the terminal part and write scripts for the host
communication.

The customer part provides attributes for all of the fields on the host screen
in the public interface. All of these attributes are defined as instance
variables, and the get and set methods are generated with VisualAge. The
public interface also provides events to inform other parts of the successful
execution of a method.

• Composition Editor view

Figure 197 shows the Composition Editor view for the customer part.

Figure 197. Composition Editor View: ItsCspSampleCustomer

Visual programming is used to implement the instantiation of a new
customer window part. This logic is defined in the upper half of the
Composition Editor view and is implemented with a factory part. After the
readNewCustomerWithId action is executed successfully, the
NewCustomerFound event is raised. This is the trigger to create a new
instance of a Customer Window part with a customer defined as a variable in
the public interface. After the new method, the openOwnedWidget message
is sent to open the new instance.

The visual programming logic in the lower half of the Composition Editor
view is a 3270 terminal connected to the Communication SideInfo part that
keeps the value of the session ID. Instead of adding a separate
Abt3270Terminal part to the free form surface, we could also tear off the
terminal from the Communication SideInfo part.

The 3270 terminal is used by scripts. The first time a script is executed from
a customer instance (readNewCustomerWithId), the 3270 terminal is
assigned to the terminal instance variable.

• Part assembly

Figure 198 on page 176 shows the part assembly for the Customer part.

Chapter 8. Implementation Walkthrough 175

Figure 198. Part Assembly: ItsCspSampleCustomer

• Public interface

Figure 199 shows the public interface for the Customer part.

Figure 199. Public Interface: ItsCspSampleCustomer

• Used in part

− ItsCspSampleCustomerListWindow
− ItsCspSampleNewCustomerWindow

• Superclass of

None

• Class definition

176 Building GUIs

Figure 200 shows the class definition for the customer part.

AbtAppBldrPart subclass: #ItsCspSampleCustomer
instanceVariableNames: ′ terminal

titel
lastNameAndFirstName
customerRecord
zipCode
contact
customerSince
adressRow2
telex
state
phone
industry
fax
customerNumber
adressRow3
adressRow1 ′

classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 200. Class Definition: ItsCspSampleCustomer

• Scripts

Table 28 shows the scripts for the customer part.

Table 28. Scripts: Customer

Method Description

readNewCustomerWithId:
anIdString

Reads a customer with the number passed as a substring in the
parameter. The string passed as a parameter comes directly from
the Customer List Window list box and contains number and name.
The NewCustomerFound event is raised if the search for the customer
was successful. The NoCustomerFound event is raised if the search
for the customer was not successful.

updateCustomer
Updates a customer with the values stored in the instance variables
of the Customer part and raises the CustomerUpdated event.

deleteCustomer
Deletes the Customer with the number stored in the instance variable
of the Customer part and raises the CustomerDeleted event.

refreshCustomer
Refreshes the customer with the number stored in the instance
variable of the Customer part and raises the CustomerRefreshed
event.

addCustomer
Adds a customer using the values stored in the instance variables of
the Customer part.

startTransaction
Starts transaction STLC. The transaction code is hardcoded here and
does not use the capabilities of the communication SideInfo part.

The get and set methods for the instance variables are not mentioned in
Table 28, because they are generated with VisualAge and modified to
perform a lazy initialization as described in 3.5.1.2, “Generating Scripts for
the Attributes” on page 71.

Chapter 8. Implementation Walkthrough 177

Figure 201 shows the readNewCustomerWithId: method.

readNewCustomerWithId: anIdString

| aFieldDefRecord aScreenRecord aNewCustomer
theFirstSubStringOfIdString |

theFirstSubStringOfIdString := anIdString subStrings at: 1.

terminal := self partAttributeValue: #(#′3270 Terminal′ #self).
self startTransaction.

″first Selection Map up″
terminal enter: theFirstSubStringOfIdString

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″List with one Item shown″
terminal keyHome.
terminal enter: ′ S′

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″Customer Details Map shown″
aFieldDefRecord := terminal buildFieldDefsOfType: ′ Protected′ .

″Protected Fields″
 aScreenRecord := terminal buildScreenRecordForFields: aFieldDefRecord.

aNewCustomer := self class new.

 aNewCustomer customerNumber: theFirstSubStringOfIdString;
titel: (aScreenRecord at:#FieldNumber5);
lastNameAndFirstName: (aScreenRecord at:#FieldNumber7);
adressRow1: (aScreenRecord at:#FieldNumber9);
phone: (aScreenRecord at:#FieldNumber11);
adressRow2: (aScreenRecord at:#FieldNumber13);
fax: (aScreenRecord at:#FieldNumber15);
adressRow3: (aScreenRecord at:#FieldNumber17);
telex: (aScreenRecord at:#FieldNumber19);
state: (aScreenRecord at:#FieldNumber21);
zipCode: (aScreenRecord at:#FieldNumber23);
industry: (aScreenRecord at:#FieldNumber25);
contact: (aScreenRecord at:#FieldNumber27);
customerSince: (aScreenRecord at:#FieldNumber29).

″Store terminal for update, delete, refresh″
aNewCustomer terminal: terminal.

terminal keyPF:3.
terminal keyPF:3.

″store object in temporary variable to use as factory instance variable″

Figure 201 (Part 1 of 2). Method: readNewCustomerWithId

178 Building GUIs

self partAttributeValue: #(#TempNewCustomer #self) put: aNewCustomer.

″signal Customer found″
self signalEvent: #NewCustomerFound.

^aNewCustomer.

Figure 201 (Part 2 of 2). Method: readNewCustomerWithId

Figure 202 shows the updateCustomer method.

updateCustomer

| aFieldDefRecord |

self startTransaction.

″first Selection Map up″
terminal enter: (self customerNumber)

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″List with one Item shown″
terminal keyHome.

″Input: U for Update on firstLine″
terminal enter: ′ U′

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″Customer Details Map shown″
aFieldDefRecord := terminal buildFieldDefsOfType: ′ Unprotected′ .

terminal copyString: (self titel)
toField: (aFieldDefRecord fieldAt: #FieldNumber1);

copyString: (self lastNameAndFirstName)
toField: (aFieldDefRecord fieldAt: #FieldNumber2);

copyString: (self adressRow1)
toField: (aFieldDefRecord fieldAt: #FieldNumber3);

copyString: (self phone)
toField: (aFieldDefRecord fieldAt: #FieldNumber4);

copyString: (self adressRow2)
toField: (aFieldDefRecord fieldAt: #FieldNumber5);

copyString: (self fax)
toField: (aFieldDefRecord fieldAt: #FieldNumber6);

Figure 202 (Part 1 of 2). Method: updateCustomer

Chapter 8. Implementation Walkthrough 179

copyString: (self adressRow3)
toField: (aFieldDefRecord fieldAt: #FieldNumber7);

copyString: (self telex)
toField: (aFieldDefRecord fieldAt: #FieldNumber8);

copyString: (self state)
toField: (aFieldDefRecord fieldAt: #FieldNumber9);

copyString: (self zipCode)
toField: (aFieldDefRecord fieldAt: #FieldNumber10);

copyString: (self industry)
toField: (aFieldDefRecord fieldAt: #FieldNumber11);

copyString: (self contact)
toField: (aFieldDefRecord fieldAt: #FieldNumber12);

copyString: (self customerSince)
toField: (aFieldDefRecord fieldAt: #FieldNumber13).

terminal enter: ′ ′
andWaitForCursorPositionToChangeFrom: 1@1.

terminal keyPF:3.

^self signalEvent: #CustomerUpdated.

Figure 202 (Part 2 of 2). Method: updateCustomer

Figure 203 shows the deleteCustomer method.

deleteCustomer

| aFieldDefRecord aScreenRecord aMessagebox |

self startTransaction.

″first Selection Map up″
terminal enter: (self customerNumber)

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″List with one Item shown″
terminal keyHome.

″Enter ′ D′ for Delete on first line″
terminal enter: ′ D′

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″Customer Details Map shown″
aFieldDefRecord := terminal buildFieldDefsOfType: ′ Protected′ .

 aScreenRecord := terminal buildScreenRecordForFields: aFieldDefRecord.

 self titel: (aScreenRecord at:#FieldNumber5);
lastNameAndFirstName: (aScreenRecord at:#FieldNumber7);
adressRow1: (aScreenRecord at:#FieldNumber9);

Figure 203 (Part 1 of 2). Method: deleteCustomer

180 Building GUIs

phone: (aScreenRecord at:#FieldNumber11);
adressRow2: (aScreenRecord at:#FieldNumber13);
fax: (aScreenRecord at:#FieldNumber15);
adressRow3: (aScreenRecord at:#FieldNumber17);
telex: (aScreenRecord at:#FieldNumber19);
state: (aScreenRecord at:#FieldNumber21);
zipCode: (aScreenRecord at:#FieldNumber23);
industry: (aScreenRecord at:#FieldNumber25);
contact: (aScreenRecord at:#FieldNumber27);
customerSince: (aScreenRecord at:#FieldNumber29).

(CwMessagePrompter confirm: (′ Delete Customer: ″ ′ ,
((self lastNameAndFirstName) trimBlanks),′ ″ ? ′)
title: ′ Delete Customer′)

ifTrue:
[

terminal keyEnter.
self signalEvent: #CustomerDeleted.

]
ifFalse:

[terminal keyPF: 3].

terminal keyPF:3.

Figure 203 (Part 2 of 2). Method: deleteCustomer

Figure 204 shows the refreshCustomer method.

refreshCustomer

| aFieldDefRecord aScreenRecord |

self startTransaction.

″first Selection Map up″
terminal enter: (self customerNumber)

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″List with one Item shown″
terminal keyHome.
terminal enter: ′ S′

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″Customer Details Map shown″

Figure 204 (Part 1 of 2). Method: refreshCustomer

Chapter 8. Implementation Walkthrough 181

aFieldDefRecord := terminal buildFieldDefsOfType: ′ Protected′ .
 aScreenRecord := terminal buildScreenRecordForFields: aFieldDefRecord.

 self titel: (aScreenRecord at:#FieldNumber5);
lastNameAndFirstName: (aScreenRecord at:#FieldNumber7);
adressRow1: (aScreenRecord at:#FieldNumber9);
phone: (aScreenRecord at:#FieldNumber11);
adressRow2: (aScreenRecord at:#FieldNumber13);
fax: (aScreenRecord at:#FieldNumber15);
adressRow3: (aScreenRecord at:#FieldNumber17);
telex: (aScreenRecord at:#FieldNumber19);
state: (aScreenRecord at:#FieldNumber21);
zipCode: (aScreenRecord at:#FieldNumber23);
industry: (aScreenRecord at:#FieldNumber25);
contact: (aScreenRecord at:#FieldNumber27);
customerSince: (aScreenRecord at:#FieldNumber29).

 terminal keyPF:3.
 terminal keyPF:3.

^self signalEvent: #CustomerRefreshed.

Figure 204 (Part 2 of 2). Method: refreshCustomer

Figure 205 shows the addCustomer method.

addCustomer

| aFieldDefRecord |

terminal := self partAttributeValue: #(#′3270 Terminal′ #self).

self startTransaction.

″first Selection Map up″
terminal enter: ′ *′

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″List with one Item shown″
terminal keyHome.

″Input: N for New on firstLine″
terminal enter: ′ N′

andWaitForCursorPositionToChangeFrom: 1 @ 1.

″Customer Details Map shown″
aFieldDefRecord := terminal buildFieldDefsOfType: ′ Unprotected′ .

″Unprotected Fields″

terminal copyString: (self titel)

Figure 205 (Part 1 of 2). Method: addCustomer

182 Building GUIs

toField: (aFieldDefRecord fieldAt: #FieldNumber1);
copyString: (self lastNameAndFirstName)

toField: (aFieldDefRecord fieldAt: #FieldNumber2);
copyString: (self adressRow1)

toField: (aFieldDefRecord fieldAt: #FieldNumber3);
copyString: (self phone)

toField: (aFieldDefRecord fieldAt: #FieldNumber4);
copyString: (self adressRow2)

toField: (aFieldDefRecord fieldAt: #FieldNumber5);
copyString: (self fax)

toField: (aFieldDefRecord fieldAt: #FieldNumber6);
copyString: (self adressRow3)

toField: (aFieldDefRecord fieldAt: #FieldNumber7);
copyString: (self telex)

toField: (aFieldDefRecord fieldAt: #FieldNumber8);
copyString: (self state)

toField: (aFieldDefRecord fieldAt: #FieldNumber9);
copyString: (self zipCode)

toField: (aFieldDefRecord fieldAt: #FieldNumber10);
copyString: (self industry)

toField: (aFieldDefRecord fieldAt: #FieldNumber11);
copyString: (self contact)

toField: (aFieldDefRecord fieldAt: #FieldNumber12);
copyString: (self customerSince)

toField: (aFieldDefRecord fieldAt: #FieldNumber13).

terminal keyEnter.
terminal keyPF:3.

^self signalEvent: #CustomerAdded.

Figure 205 (Part 2 of 2). Method: addCustomer

Figure 206 shows the startTransaction method.

startTransaction

terminal keyHome;
enterCommand: ′ STLC′ .

Figure 206. Method: startTransaction

Figure 207 shows the titel method.

titel
″Return the value of titel.″

titel isNil ifTrue:
[self titel: ′ ′].

^titel

Figure 207. Method: titel

Figure 208 on page 184 shows the titel: method.

Chapter 8. Implementation Walkthrough 183

titel: aString
″Save the value of titel.″

titel := (aString trimBlanks).
self signalEvent: #titel

with: aString.

Figure 208. Method: titel:

The get and set methods shown in Figure 207 on page 183 and Figure 208
are examples of the generated methods to read and write an instance
variable. The other instance variables have the analogous get and set
methods.

• Event trace

Table 29 shows the event trace for the customer part.

Table 29. Event Trace: Customer

Event Sequence of Executed Connections

event:
NewCustomerFound
(raised from hook
readNewCustomerWithId)

• event: NewCustomerFound >> new (factory of
CustomerWindows)

• result of new >> openOwnedWidget

• Special comments

In the Customer part, we write directly to the EHLLAPI interface from the
terminal part. We want to show different ways to build record objects that
can be used to access the terminal presentation space.

How to Read from the Terminal Presentation Space

The easiest way to read from the terminal presentation space is to use
methods of the Abt3270Terminal part to build a record object that
contains the protected fields. We can address a field at a specific offset
with a defined length in the presentation space through the field names
(#FieldNumberX) as shown in the following code fragment:

aFieldDefRecord := terminal buildFieldDefsOfType: ′ Protected′ .
aScreenRecord := terminal buildScreenRecordForFields: aFieldDefRecord.

self titel: (aScreenRecord at:#FieldNumber5).

How to Write to the Terminal Presentation Space

We build a record object that contains all unprotected fields of the host
map. We can address a field at a specific offset with a defined length in
the presentation space through the field names (#FieldNumberX) as
shown in the following code fragment:

aFieldDefRecord := terminal buildFieldDefsOfType: ′ Unprotected′ .

terminal copyString: (self titel)
toField: (aFieldDefRecord fieldAt: #FieldNumber1);

184 Building GUIs

To update the fields on the host map, the Abt3270Terminal part provides the
copyString: toField: method. This method can be used to write to the fields
in the presentation space. The copyString: toField: method is implemented
such that fields are overwritten and not padded with blanks. We decided to
change the method to pad the fields with blanks as shown in the box below.

Change to the copyString: toField: Method

copyString: aString toField: aFieldDefItem

″Write the string on the host screen at the location and
length specified by aFieldDefItem.″

| rc |

rc := self doHostPS: [
self copy: (aString abrPadWithBlanks:(aFieldDefItem length))

toFieldAtOffset: aFieldDefItem offset + 1].
^self handleRC: rc locus: #copyString:

toField: ifNonZero: [self lastError].

″------------------ ORIGINAL CODE -----------------------″
″
rc := self doHostPS: [

self copy: aString
toFieldAtOffset: aFieldDefItem offset + 1].

^self handleRC: rc locus: #copyString:
toField: ifNonZero: [self lastError].

″
″------------------END OF ORIGINAL CODE -----------------″

How to Create a Model Object

The best way to create model objects is a step-by-step approach using
the VisualAge generate default scripts function as follows:

• Add all attributes that represent the data of your model object to the
public interface.

• Select the generate default scripts function in the File menu and
generate instance variables and the methods to get and set the
instance variables.

• Modify the get method to provide a lazy initialization for the instance
variables.

8.17 Customer Wi ndow
The windows created by the Customer part are instances of the Customer
Window part. The Customer Window part belongs to the view side and contains
the details of a customer in a notebook. The window presents all instance
variables of the customer object that are defined as public interface attributes in
the entry fields.

An additional function in the GUI application is to start a PWS editor to write a
letter to the selected customer and pass the data of the customer as an address
to the letter.

Chapter 8. Implementation Walkthrough 185

• Part name

ItsCspSampleCustomerWindow

• Category

Visual composite part

• Description

This part again demonstrates the power of visual programming. Only the
method to write to the letter file is implemented with a script.

The Customer Window part contains a customer model object in a variable.
This variable is defined in the public interface and is filled during
instantiation of a Customer Window.

• Composition Editor view

We show the part logic in two different pictures where only half of the
connections are visible and the others are hidden, because there are many
connections between the different parts in the Composition Editor view.

Figure 209 shows the logic required to initialize the window, start the editor
with the program starter, and close and destroy the part.

The subpart InformationLine is a bit difficult to recognize in the picture. It is
positioned above the push buttons and is selected, as the message at the
bottom of the Composition Editor indicates.

Figure 209. Composition Editor View: ItsCspSampleCustomerWindow (Part 1)

Figure 210 on page 187 contains the logic to trigger the refresh, update, and
delete actions of the customer object each time the user clicks on the
respective push button. The information line in the window provides
feedback for the user about the execution of the requested action.

The host processing window is shown during host processing and hidden
when the host is idle. This part should be locked when the Customer part is

186 Building GUIs

communicating with the host. This locking function was not implemented in
our sample application.

Figure 210. Composition Editor View: ItsCspSampleCustomerWindow (Part 2)

• Part assembly

Figure 211 on page 188 shows the part assembly for the Customer Window
part.

Chapter 8. Implementation Walkthrough 187

Figure 211. Part Assembly: ItsCspSampleCustomerWindow

• Public interface

Figure 212 on page 189 shows the public interface for the Customer Window
part.

188 Building GUIs

Figure 212. Public Interface: ItsCspSampleCustomerWindow

• Used in part

None (created dynamically by the factory in the customer part)

• Superclass of

None

• Class definition

Figure 213 shows the class definition for the Customer Window part.

AbtAppBldrView subclass: #ItsCspSampleCustomerWindow
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 213. Class Definition: ItsCspSampleCustomerWindow

• Scripts

Table 30 shows the scripts for the Customer Window part.

Table 30. Scripts: Customer Window

Method Description

openFile
Opens a file dialog and writes the address of the customer to the file.
The name of the file is returned.

Figure 214 on page 190 shows the openFile method.

Chapter 8. Implementation Walkthrough 189

openFile

| dialog file fileStream text |

dialog := CwFileSelectionPrompter new initialize;
searchMask: ′ *.TXT′ .

file := dialog prompt.

fileStream := CfsWriteFileStream openEmpty: file.

fileStream
nextPutAll: ′ Letter′ ;
cr;
nextPutAll: ′======′;
cr;cr;cr;
nextPutAll:
(self partAttributeValue: #(#Customer #titel)) ;
cr;
nextPutAll:

(self partAttributeValue: #(#Customer #lastNameAndFirstName));
cr;
nextPutAll: (self partAttributeValue: #(#Customer #adressRow1));
cr;
nextPutAll: (self partAttributeValue: #(#Customer #adressRow2));
cr;
nextPutAll: (self partAttributeValue: #(#Customer #adressRow3));
cr;
nextPutAll: (self partAttributeValue: #(#Customer #state)),

(self partAttributeValue: #(#Customer #zipCode));
cr;cr;cr;
nextPutAll: ′ Phone: ′ ,

(self partAttributeValue: #(#Customer #phone));
cr;cr;cr;cr;
nextPutAll: ′ Dear ′ , (self partAttributeValue: #(#Customer #titel)),

′ ′ ,
(self partAttributeValue: #(#Customer #lastNameAndFirstName)),
′ ′ ;

cr;cr.

fileStream close.

^file.

Figure 214. Method: openFile

• Event trace

Table 31 shows the event trace (part 1) for the customer window part.

Table 31 (Page 1 of 2). Event Trace: Customer Window (Part 1)

Sequence of Executed Connections

Initialization and
synchronization of
notebook

(1) attribute-to-attribute connections between notebook entry fields
and customer instance variables to link the values

190 Building GUIs

Table 31 (Page 2 of 2). Event Trace: Customer Window (Part 1)

Sequence of Executed Connections

Initialization and
synchronization of title
bar

(2) attribute-to-attribute connection between name entry field and title
text to link the values

User action: click on
Write Letter push button

• (3) pbWriteLetterPressed (ExistingCustomerNotebook) >>
openFile (hook)

• (4) result of openFile (hook) >> action: startProgram
(ProgramStarter) ′EPM.EXE′ and pass the file name (result of 3)
as a parameter

user action: click on
Cancel push button

• (6) c l icked >> closeWidget

• (7) clicked >> destroyPart (because the part was created
dynamically)

Table 32 shows the event trace (part 2) for the customer window part.

Table 32 (Page 1 of 2). Event Trace: Customer Window (Part 2)

User Action Sequence of Executed Connections

User action: click on
Refresh push button

• (1) cl icked >> init ial izeInformationLine

• (2) cl icked >> openWidget (HostProcessingWindow)

• (3) cl icked >> refreshCustomer (Customer variable)

• (4) event: CustomerRefreshed (Customer variable) >>
writeInformationLine (Label strings: ′ Information′, ′Customer
refreshed ′)

• (5) event: CustomerRefreshed (Customer variable) >>
closeWidget (HostProcessingWindow)

User action: click on
Update push button

• (1) cl icked >> init ial izeInformationLine

• (2) cl icked >> openWidget (HostProcessingWindow)

• (3) cl icked >> updateCustomer (Customer variable)

• (4) event: CustomerUpdated (Customer variable) >>
writeInformationLine (Label strings: ′ Information′, ′Customer
updated ′)

• (5) event: CustomerUpdated (Customer variable) >>
closeWidget (HostProcessingWindow)

Chapter 8. Implementation Walkthrough 191

Table 32 (Page 2 of 2). Event Trace: Customer Window (Part 2)

User Action Sequence of Executed Connections

User action: click on
Delete push button

• (1) cl icked >> init ial izeInformationLine

• (2) cl icked >> openWidget (HostProcessingWindow)

• (3) cl icked >> deleteCustomer (Customer variable)

• (4) event: CustomerDeleted (Customer variable) >>
writeInformationLine (Label strings: ′ Information′, ′Customer
deleted ′)

• (5) event: CustomerDeleted (Customer variable) >> closeWidget
(HostProcessingWindow)

• (5 of part 1) event: CustomerDeleted (Customer variable) >>
initializeFields (ExistingCustomerNotebook)

• Special comments

We write to a sequential file in this part. The methods to open a file
selection dialog and to write to the file are shown in the box below.

How to Write to a Sequential File

• Select a file name with a file dialog:

dialog := CwFileSelectionPrompter new initialize;
searchMask: ′ *.TXT′ .

file := dialog prompt.

• Open the file in overwrite mode:

fileStream := CfsWriteFileStream openEmpty: file.

• Write a line to the file:

fileStream nextPutAll: ′ Text......′ ;
cr.

• Close the file:

fileStream close.

8.18 Customer Notebook Form
In the Customer Window part, the ExistingCustomerNotebookForm is a subpart
inside the window. This subpart is an inherited part from the Customer
Notebook Form described here. The idea of this abstract part is to provide a
common view, common logic, and common public interface definitions for the
specialized parts: ExistingCustomerNotebookForm and
NewCustomerNotebookForm. This part shows that the inheritance mechanism in
VisualAge extends to the public interface definition.

Because this part is an abstract part, used for inheritance, it is not directly
visible in the running application.

• Part name

ItsCspSampleCustomerNotebookForm

• Category

192 Building GUIs

Abstract visual part

• Description

This part provides the logic to show the actual date in a date entry field and
to clear all entry fields.

• Composition Editor view

Figure 215 shows the variables that are added as attributes to the public
interface. The variables are created using the tear-off function from the entry
fields. The variables on the right-hand side are connected to the entry fields
on the second page of the notebook, and we do not show the connections.

Figure 215. Composition Editor View: ItsCspSampleCustomerNotebookForm (Part 1)

Figure 216 on page 194 shows the initialization for the entry fields.

Chapter 8. Implementation Walkthrough 193

Figure 216. Composition Editor View: ItsCspSampleCustomerNotebookForm (Part 2)

Figure 217 shows the sequence of connections executed when the
#InitializeFields event is raised. The event is raised by the initializeFields
action.

Figure 217. Composition Editor View: ItsCspSampleCustomerNotebookForm (Part 3)

• Part assembly

None

• Public interface

194 Building GUIs

Figure 218 shows the public interface for the Customer Notebook Form.

Figure 218. Public Interface: ItsCspSampleCustomerNotebookForm

• Used in part

None (abstract part used for inheritance)

• Superclass of

Figure 219 on page 196 shows the inheritance hierarchy for the Customer
Notebook Form.

Chapter 8. Implementation Walkthrough 195

Figure 219. Inheritance Hierarchy: ItsCspSampleCustomerNotebookForm

• Class definition

Figure 220 shows the class definition for the Customer Notebook Form.

AbtAppBldrView subclass: #ItsCspSampleCustomerNotebookForm
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 220. Class Definition: ItsCspSampleCustomerNotebookForm

• Scripts

Table 33 shows the scripts for the Customer Notebook Form.

Table 33. Scripts: Customer Notebook Form

Method Description

actualDate Returns the actual date of today.

initializeFields Raises the InitializeFields event.

Figure 221 on page 197 shows the actualDate method.

actualDate

^Date today.

Figure 221. Method: actualDate

196 Building GUIs

Figure 222 shows the initializeFields method.

initializeFields

self signalEvent: #InitializeFields.

Figure 222. Method: initializeFields

• Event trace

Table 34 shows the event trace for the Customer Notebook Form.

Table 34. Event Trace: Customer Notebook Form

Events Sequence of Executed Connections

Part initialization
(1) aboutToOpenWidget >> actualDate (hook), pass returned date to
date field

InitializeFields (triggered
from the part where this
part is used)

(2) event: Init ializeFields >> see Figure 217 on page 194 for the
connections

InitializeFields (triggered
from the part where this
part is used)

(3) event: InitializeFields >> actualDate (hook) (see also Figure 217
on page 194 for the connections)

• Special comments

We show how an external action can trigger follow-up events inside the part
(InitializeFields action -> InitializeFields event).

How to Initialize Entry Fields with Blanks

The following sequence demonstrates how entry fields can be initialized
using visual programming:

 1. Add an entry field with a blank string to the free form surface in the
Composition Editor.

 2. Connect this entry field to the parameter of the entry field action
string, which sets the contents of an entry field.

8.19 Existing Customer Notebook Form
The Existing Customer Notebook Form is a specialization of the Customer
Notebook Form. It is visible inside the Customer Window part, where it is used
as a subpart.

• Part name

ItsCspSampleExistingCustomerNotebookForm

• Category

Composite visual part

• Description

Chapter 8. Implementation Walkthrough 197

This part is created as a subclass of the Customer Notebook Form. A
Customer Number Form part is added to the part and to the public interface
of the part.

The push buttons to start writing a letter, initiate a phone call, and start a
FAX application are added to the notebook. The events to be raised when
the user clicks on one of those push buttons are defined in the public
interface.

• Composition Editor view

Figure 223 shows the first part of the Composition Editor view for the Existing
Customer Notebook Form.

Figure 223. Composition Editor View: ItsCspSampleExistingCustomerNotebookForm (Part
1)

Figure 224 on page 199 shows the second part of the Composition Editor
view for the Existing Customer Notebook Form.

198 Building GUIs

Figure 224. Composition Editor View: ItsCspSampleExistingCustomerNotebookForm (Part
2)

• Part assembly

Figure 225 shows the part assembly for the Existing Customer Notebook
Form.

Figure 225. Part Assembly: ItsCspSampleExistingCustomerNotebookForm

• Public interface

Figure 226 on page 200 shows the public interface for the Existing Customer
Notebook Form.

Chapter 8. Implementation Walkthrough 199

Figure 226. Public Interface: ItsCspSampleExistingCustomerNotebookForm

• Used in part

ItsCspSampleCustomerWindow

• Superclass of

None

• Class definition

Figure 227 shows the class definition for the Existing Customer Notebook
Form.

ItsCspSampleCustomerNotebookForm subclass:
#ItsCspSampleExistingCustomerNotebookForm

instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 227. Class Definition: ItsCspSampleExistingCustomerNotebookForm

• Scripts

Table 35 shows the scripts for the Existing Customer Notebook Form.

Table 35 (Page 1 of 2). Scripts: Existing Customer Notebook Form

Method Description

pbDialPressed
Push button for phone dialing is pressed and the PbDialPressed event
is raised.

pbSendPressed
Push button for sending a FAX is pressed and the PbSendPressed
event is raised.

200 Building GUIs

Table 35 (Page 2 of 2). Scripts: Existing Customer Notebook Form

Method Description

pbWriteLetterPressed
Push button for writing a letter is pressed and the
PbWriteLetterPressed event is raised.

Figure 228 shows the pbDialPressed method.

pbDialPressed

self signalEvent: #PbDialPressed.

Figure 228. Method: pbDialPressed

Figure 229 shows the pbSendPressed method.

pbSendPressed

self signalEvent: #PbSendPressed.

Figure 229. Method: pbSendPressed

Figure 230 shows the pbWriteLetterPressed method.

pbWriteLetterPressed

self signalEvent: #PbWriteLetterPressed.

Figure 230. Method: pbWriteLetterPressed

• Event trace

Table 36 shows the event trace for the Existing Customer Notebook Form.

Table 36. Event Trace: Existing Customer Notebook Form

User Action Sequence of Executed Connections

Click on Write Letter push
button

cl icked >> pbWriteLetterPressed (hook)

Click on Dial Phone push
button

cl icked >> pbDialPressed (hook)

Click on Send Fax push
button

cl icked >> pbSendPressed (hook)

• Special comments

We discuss here the difference between inheriting from a part and adding a
part.

If we inherit from a part we can change and extend the subpart (subclass)
without changing the look and feel of the part′s superclass.

Chapter 8. Implementation Walkthrough 201

Adding a part should be treated as a read-only situation. The added part
should be used as is. If we edit the part, the part is changed in every place
where it is used, not just in the application or part where it is edited.

8.20 Customer Number Form
This part illustrates the granularity that can be achieved when applications are
constructed from parts. The Customer Number Form part is a form with two
labels.

The same approach could be used for an entry field with a sophisticated
validation or formatting algorithm assigned. Such a part could be reused as an
isolated part.

• Part name

ItsCspSampleCustomerNumberForm

• Category

Basic visual part

• Description

This is a very simple part that contains a prompt and an empty label string.
The empty label string (#laNumber) is connected to a variable created using
tear-off. The variable is added to the public interface so that the label string
can be set using visual programming.

• Composition Editor view

Figure 231 shows the Composition Editor view for the Customer Number
Form.

Figure 231. Composition Editor View: ItsCspSampleCustomerNumberForm

• Part assembly

202 Building GUIs

None

• Public interface

Figure 232 shows the public interface for the Customer Number Form.

Figure 232. Public Interface: ItsCspSampleCustomerNumberForm

• Used in part

ItsCspSampleExistingCustomerNotebookForm

• Superclass of

None

• Class definition

Figure 233 shows the class definition for the Customer Number Form.

AbtAppBldrView subclass: #ItsCspSampleCustomerNumberForm
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 233. Class Definit ion: ItsCspSampleCustomerNumberForm

• Scripts

None

• Event trace

None

• Special comments

None

Chapter 8. Implementation Walkthrough 203

8.21 Information Line Form
The Information Line Form part is a very simple, generic part. It provides a
standardized way of giving users textual feedback about the current status of an
application.

Building basic parts, such as this one, can provide a common look and feel for
the windows of the entire application.

• Part name

ItsInformationLineForm

• Category

Basic visual part

• Description

This simple part contains an empty label string. The empty label string
(#laInformationText) can be initialized and set with actions available in the
public interface.

• Composition Editor view

Figure 234 shows the Composition Editor view for the Information Line Form.

Figure 234. Composition Editor View: ItsInformationLineForm

• Part assembly

None

• Public interface

Figure 235 on page 205 shows the public interface for the Information Line
Form.

204 Building GUIs

Figure 235. Public Interface: ItsInformationLineForm

• Used in part

− ItsCspSampleCustomerWindow
− ItsCspSampleNewCustomerWindow

• Superclass of

None

• Class definition

Figure 236 shows the class definition for the Information Line Form.

AbtAppBldrView subclass: #ItsInformationLineForm
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 236. Class Definit ion: ItsInformationLineForm

• Scripts

Table 37 shows the scripts for the Information Line Form.

Table 37. Scripts: Information Line Form

Method Description

initializeInfo Initializes the text in the information line with blanks.

showInfo: aPromptString
text: aString

Sets the prompt and the text in the information line.

Figure 237 on page 206 shows the initializeInfo method.

Chapter 8. Implementation Walkthrough 205

initializeInfo

self partAttributeValue: #(#laInformationText #labelString) put: ′ ′ .

Figure 237. Method: initializeInfo

Figure 238 shows the showInfo: text: method.

showInfo: aPromptString text: aString

self partAttributeValue: #(#laInformationText #labelString)
put: (aPromptString, ′ : ′ , aString).

Figure 238. Method: showInfo: text:

• Event trace

None

• Special comments

None

8.22 New Customer Window
The New Customer Window is opened to add a new customer. It is implemented
as a single instance window in the application.

The window has two push buttons to allow for two different modes of operation
for adding customers. If the Add push button is selected, the window is closed
automatically after a new customer is added through the host application. If the
Add more push button is selected, the window remains open after a customer is
added. To implement this mechanism, we keep information in a flag to
remember which push button was selected.

• Part name

ItsCspSampleNewCustomerWindow

• Category

Composite visual part

• Description

This part contains a single instance window, and it is not created by a model
object as is the Customer Window. An instance of this part is created on the
view side of our application. The New Customer Window is added as a
subpart to the CSP sample application Customer Application (Main) window
(see Figure 108 on page 106) and is opened after the user double-clicks on
the new customer icon. Therefore this view object has the model object,
customer, directly added as a subpart in its Composition Editor view.

The visual programming logic to know which push button was clicked is
implemented with a checkbox on the free form surface. The push button
#clicked event is connected to the #selection action of the toggle button with
a parameter, set to checked or unchecked, in its settings. The value of the
checked parameter is queried from a script that is triggered after the
addCustomer method is executed and the CustomerAdded event is raised.

206 Building GUIs

• Composition Editor view

Figure 239 shows the Composition Editor view for the New Customer
Window.

Figure 239. Composition Editor View: ItsCspSampleNewCustomerWindow

• Part assembly

Figure 240 on page 208 shows the part assembly for the New Customer
Window.

Chapter 8. Implementation Walkthrough 207

Figure 240. Part Assembly: ItsCspSampleNewCustomerWindow

• Public interface

None

• Used in part

ItsCspSampleMainWindow

• Superclass of

None

• Class definition

Figure 241 shows the class definition for the New Customer Window.

AbtAppBldrView subclass: #ItsCspSampleNewCustomerWindow
instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 241. Class Definition: ItsCspSampleNewCustomerWindow

• Scripts

Table 38 on page 209 shows the script for the new customer window.

208 Building GUIs

Table 38. Script: New Customer Window

Method Description

addOneAndCloseWidget

Closes the widget after the customer is added successfully when
invoked through the Add push button. Whether the Add or the Add
more push button was pressed can be determined by querying
whether the toggle button (Add and Close Widget) is checked or not.

Figure 242 shows the addOneAndCloseWidget method.

addOneAndCloseWidget

(self partAttributeValue: #(#tbAddOneAndCloseWidget #selection))
ifTrue:

[(self subpartNamed: #Window1) performActionNamed: #closeWidget.].

Figure 242. Method: addOneAndCloseWidget

• Event trace

Table 39 shows the event trace for the new customer window.

Table 39 (Page 1 of 2). Event Trace: New Customer Window

User Action Sequence of Executed Connections

Click on Add push button

• (1) cl icked >> init ial izeInformationLine

• (2) cl icked >> openWidget (HostProcessingWindow)

• (3) cl icked >> selection with value checked as a parameter
defined in the connection settings

• (4) cl icked >> addCustomer (Customer part)

• (5) event: CustomerAdded (Customer part) >>
writeInformationLine (Label strings: ′ Information′, ′Customer
added ′)

• (6) event: CustomerAdded (Customer part) >>
addOneAndCloseWidget (hook)

• (7) event: CustomerAdded (Customer variable) >> closeWidget
(HostProcessingWindow)

Chapter 8. Implementation Walkthrough 209

Table 39 (Page 2 of 2). Event Trace: New Customer Window

User Action Sequence of Executed Connections

Click on Add more push
button

• (1) cl icked >> init ial izeInformationLine

• (2) cl icked >> openWidget (HostProcessingWindow)

• (3) cl icked >> selection with value unchecked as a parameter
defined in the connection settings

• (4) cl icked >> addCustomer (Customer part)

• (5) event: CustomerAdded (Customer part) >>
writeInformationLine (Label strings: ′ Information′, ′Customer
added ′)

• (6) event: CustomerAdded (Customer part) >>
addOneAndCloseWidget (hook)

• (7) event: CustomerAdded (Customer variable) >> closeWidget
(HostProcessingWindow)

Click on Cancel push
button

(8) cl icked >> closeWidget

• Special comments

In the box below we explain how to keep previous events.

How to Keep information about previous events

• Add a toggle button to the free form surface with the value unchecked
in its settings.

• Connect the event that must be kept (for example, push button
clicked) to the #selection action of the toggle button.

• Open the settings of the connection and define the value checked.
(This value also could be set visually with a connection to the
parameter value of the connection.)

• Write a script and use value of the #selection attribute of the toggle
button in a Boolean expression to define the follow-on logic.

• Reset the value checked with a visual connection or from the script.

8.23 New Customer Notebook Form
The New Customer Notebook Form part is used as a subpart in the New
Customer Window. It is a basic part and mainly uses the inherited function. The
added function to erase the contents of the entry fields is done visually.

• Part name

ItsCspSampleNewCustomerNotebookForm

• Category

Basic visual part

• Description

210 Building GUIs

This part is created as a subpart (subclass) of the Customer Notebook Form
part. This part adds the Erase fields push buttons on both pages of the
notebook.

• Composition Editor view

Figure 243 shows the Composition Editor view for the New Customer
Notebook Form. The figure does not show the connections for the
initializeFields event. Because this part inherits from the Customer
Notebook Form part, all connections for the initialization are also inherited.

Figure 243. Composition Editor View: ItsCspSampleNewCustomerNotebookForm

• Part assembly

None

• Public interface

None (inherited from the Customer Notebook Form part)

• Used in part

ItsCspSampleNewCustomerWindow

• Superclass of

None

• Class definition

Figure 244 on page 212 shows the class definition for the New Customer
Notebook Form.

Chapter 8. Implementation Walkthrough 211

ItsCspSampleCustomerNotebookForm subclass:
#ItsCspSampleNewCustomerNotebookForm

instanceVariableNames: ′ ′
classVariableNames: ′ ′
poolDictionaries: ′ ′

Figure 244. Class Definition: ItsCspSampleNewCustomerNotebookForm

• Scripts

None

• Event trace

Table 40 shows the event trace for the new customer notebook form.

Table 40. Event Trace: Existing Customer Notebook Form

User Action Sequence of Executed Connections

Click on Erase fields push
button

clicked >> init ial izeFields (hook to inherited script)

The connections for the initialization after the initializeFields script raises the
InitializeFields event are also inherited. The inherited connections are
hidden in our pictures to reduce the complexity of the Composition Editor
view.

• Special comments

The inheritance in VisualAge extends to the class definition with variables
and methods and the public interface definition.

212 Building GUIs

Appendix A. Screen Field Monitor Tool

One of the challenges developers of VisualAge EHLLAPI applications face is the
mapping between the fields on the host screen and the fields that can be torn off
from an Abt3270Screen part as a result of VisualAge′s parsing of the host
screen. We developed a tool during our project that helps developers meet that
challenge. Our tool is a VisualAge application that can be executed against any
host screen and shows the input and output fields from the host screen in two
list boxes with field number, length, position, and contents.

This appendix describes the problem, explains VisualAge′s parsing of the host
screen, and gives detailed information about our tool.

A.1 Problem Description
To understand the problem, one must first understand how the data from the
host screen is represented on the PWS and how VisualAge parses the host
screen to build input and output records that can be used to send data to and
receive data from the host using VisualAge′s EHLLAPI support. Figure 245 on
page 214 shows the problem domain.

 Copyright IBM Corp. 1994 213

Figure 245. The Find Fields Problem

The interface between the 3270 host session and the Abt3270Terminal part,
which is also used as an instance variable in the Abt3270Screen part, is the
presentation space. The presentation space is a buffer, usually 1920 bytes long,
that can be displayed on the screen of a 3270 emulation.

Data transmitted to and from a host application is kept in the presentation space.
Data in the presentation space must be addressed with an offset in the
presentation space.

The Abt3270Terminal part provides a method of parsing the presentation space
to build a record of input and output fields. The parser considers unprotected
fields as input fields and protected fields as output fields. The distinction is
based on the field attributes.

214 Building GUIs

The parser is called from the settings view of an Abt3270Screen part when the
Build Records push button is selected. The results of this parsing method are
record objects that contain field objects. The field objects know their offset
position in the presentation space and their length.

VisualAge generates names for the input and output fields as FieldNumberX,
where X is a sequence number.

The input and output fields are visible in the attribute list of the Abt3270Screen
part and can be either torn off to get variables or used to generate the entry
fields for a window using quick form.

The input and output fields built by VisualAge′s parsing mechanism can be
manipulated using the Abt3270Screen part′s putData (to write data) and getData
actions (to read data).

Figure 246 shows the host screen used to illustrate the problem and the solution
for the problem.

Figure 246. Host Screen

Because of the way the parser works and the way VisualAge generates field
names, the challenge for the developer is to know which input or output field
maps to which field on the host map.

Developers can use the quick form function to create a default form for all input
and output fields and to display those fields in a window to help with the field
mapping. However, if a host screen has many fields, it may not be easy to fit all
fields on a single window. Remember that parsing a host screen for protected
and unprotected fields may result in many more fields than one might expect.
For example, constant text on the host screen would result in additional output
fields.

If we parse the host screen shown in Figure 246 and use quick form to build
entry fields in a window for the output fields of the host screen, we get the result
shown in Figure 247 on page 216.

Appendix A. Screen Field Monitor Tool 215

Figure 247. Quick Form with Many Fields

We created a tool—the screen field monitor—during our project to help us map
the input and output fields from VisualAge′s parsing to the fields on the host
screens. The screen field monitor provides the number of input and output fields
in two window fields and the field name, size, start position, and contents of the
input and output fields in two list boxes. Figure 248 shows the output from the
tool for the sample host screen shown in Figure 246 on page 215.

Figure 248. Fields Collected by Screen Field Monitor Tool

216 Building GUIs

A.2 Tool Implementation
The tool implementation basically had to solve two problems:

• Using a screen part whose session ID is not hardcoded but dynamically
defined from the list of available sessions

• Getting the information from the fields of the composite AbtRecord object.

Figure 249 shows the Composition Editor view with the visual programming
definitions for the screen field monitor tool.

Figure 249. Composition Editor View: Screen Field Monitor

We used an object factory part to dynamically create an Abt3270Screen part.
During initialization of the Screen Field Monitor window (aboutToOpenWidget),
the factory part creates an instance of an Abt3270Screen part. The session ID of
this Abt3270Screen part is set to the first session ID found in the list of available
sessions.

Note: Although our approach allows for dynamic host session selection at run
time, the session used during development—A in our case—must be
available at run time.

Table 41 shows the event trace for the Screen Field Monitor window
initialization.

Table 41 (Page 1 of 2). Event Trace: Initialization of the Screen Field Monitor

Sequence of Executed Connections

Window initialization
(1) aboutToOpenWidget (window) >> listActiveSessions (hook), put
result into the SessionID drop down list

Drop-down list
initialization

(2) aboutToOpenWidget (drop down list) >> selectionIndex: 1
(setting), put result into entry field

Appendix A. Screen Field Monitor Tool 217

Table 41 (Page 2 of 2). Event Trace: Initialization of the Screen Field Monitor

Sequence of Executed Connections

Following window
initialization

• (3) openedWidget (window) >> new (ScreenPartFactory), put
result into variable (ScreenPartVar)

• attribute-to-attribute connection: selectedItem (drop down list)
>> shortSessionId (ScreenPartFactory)

Users can refresh the contents of the two list boxes in the Screen Field Monitor
window to refresh the information from the same host screen or gather
information from another host screen. Table 42 shows the connections for the
Refresh push button.

Table 42. Event Trace: Refresh Push Button Clicked

User Action Sequence of Executed Connections

Click on Refresh push
button

Refer to Figure 250

• (4) cl icked >> init ial izeRefresh (hook)

• (5) cl icked >> keyString (ScreenPartVar)

• (6) cl icked >> shortSessionId (ScreenPartVar)

• (7) clicked >> refreshFieldDefs (ScreenPartVar)

• (8) cl icked >> refreshFields (hook)

• (9) cl icked >> createItemsFromInputFields (hook)

• (10) clicked >> createItemsFromOutputFields (hook)

• (11) cl icked >> l istActiveSessions (hook)

The sequence of these connections is very important for the programming logic.
Figure 250 shows the connection sequence.

Figure 250. Connection Sequence for the Refresh Push Button

The last four required connections (12 to 14 in Figure 249 on page 217) define
the logic to count the actual number of items in the list box and show and hide a
message, for instance, Fields refreshed, in an entry field. The message field is
not visible in Figure 249 on page 217.

218 Building GUIs

It is good programming style to destroy dynamically created parts when they are
no longer needed. We destroyed the ScreenPartVar variable when the window
closed. However, in our case this was optional because the application
terminates when the Screen Field Monitor window is closed.

The event trace for the remaining connections is shown in Table 43.

Table 43. Event Trace: Screen Field Monitor Additional Logic

User Action or Event Sequence of Executed Connections

event: output field items
changed

(12) items >> countOutputFieldItems (hook), put result in entry field

event: input field items
changed

(13) items >> countInputFieldItems (hook), put result in entry field

event:
showProcessingMessage
raised from hooks

(14) event: showProcessingMessage >> show (invisible entry field)

event:
hideProcessingMessage
raised from hooks

(15) event: hideProcessingMessage >> hide (invisible entry field)

user action: close widget
from the system menu

(16) closedWidget >> destroyPart (ScreenPartVar)

Figure 251 shows the definition of the class in the Smalltalk class hierarchy.

AbtAppBldrView subclass: #UrsShowFieldsPart3
instanceVariableNames: ′ screen ′
classVariableNames: ′ SessionExists ′
poolDictionaries: ′ ′

Figure 251. Class Definition: Screen Field Monitor

To implement the rest of the logic, in addition to the visual connections, we
implemented the scripts shown in Table 44.

Table 44 (Page 1 of 2). Scripts: Screen Field Monitor

Method Description

countInputFieldItems Returns the number of items in the input field list box.

countOutputFieldItems Returns the number of items in the output fields list box.

createItemsFromFields:
aFieldsRecord

Reads the presentation space with the definition of the fields
passed as a parameter (aFieldsRecord). It creates a sorted
collection.

createItemsFromInputFields
Calls the createItemFromFields method for the input fields
and returns a sorted collection.

createItemsFromOutputFields
Calls the createItemFromFields method for the output fields
and returns a sorted collection.

Appendix A. Screen Field Monitor Tool 219

Table 44 (Page 2 of 2). Scripts: Screen Field Monitor

Method Description

initializeRefresh
Stores the ScreenPartVar variable value into the screen
instance variable and deletes the items in the list boxes and
the fields in AbtRecord.

listActiveSessions Returns a dictionary with all active sessions.

playInputFieldrefreshedMusic
Plays a tune in a separate thread when the input fields are
refreshed.

playOutputFieldrefreshedMusic
Plays a tune in a separate thread when the output fields are
refreshed.

playRefreshFieldsMusic
Plays a tune in a separate thread when the input and output
fields are refreshed.

refreshFields
Refreshes the fields by requesting getFieldData from the
linked screen.

screen Returns the value of screen.

screen: anObject Saves the value of screen.

screenKeyString Returns the value of screen KeyString.

screenSessionId Returns the value of screen SessionId.

Figure 252 shows the countInputFieldItems method.

countInputFieldItems

| aCollection result |

aCollection := self partAttributeValue: #(#lbInputFields #items).

result := aCollection size.

^self partAttributeValue: #(#efInputFieldCount #object) put: result.

Figure 252. Method: countInputFieldItems

Figure 253 shows the countOutputFieldItems method.

countOutputFieldItems

| aCollection result |

aCollection := self partAttributeValue: #(#lbOutputFields #items).

result := aCollection size.

^self partAttributeValue: #(#efOutputFieldCount #object) put: result.

Figure 253. Method: countOutputFieldItems

Figure 254 on page 221 shows the createItemsFromFields: method.

220 Building GUIs

createItemsFromFields: aFieldsRecord

| aFieldsDict aString aSortedCollect aValueString |

aFieldsDict := aFieldsRecord arrayOf arrayType fields.

aSortedCollect := SortedCollection new.

aSortedCollect sortBlock: [:a :b |
((a copyFrom: 12 to: 14) trimBlanks asNumber)
<=
((b copyFrom: 12 to: 14) trimBlanks asNumber)].

aFieldsDict keysDo: [:key |

aValueString := aFieldsRecord at: key.
aString := key.
aString := aString abrPadWithBlanks: 15.
aString := aString ,′ (′ , (aFieldsDict at: key) count printString.
aString := aString abrPadWithBlanks: 19.
aString := aString ,′ / ′ ,

(screen terminal convertOffset: ((aFieldsDict at: key) offset))
printString.

aString := aString abrPadWithBlanks: 28.
aString := aString ,′) ′ .
aString := aString abrPadWithBlanks: 32.
aString := aString ,aValueString.

aSortedCollect add: aString.
].

^aSortedCollect.

Figure 254. Method: createItemsFromFields

Figure 255 shows the createItemsFromInputFields method.

createItemsFromInputFields

| aSortedCollect |

(self subpartNamed: #txtProcessingMessage)
labelString: ′ Grabbing Input Fields′ .

screen inputFields = nil ifFalse:
[aSortedCollect := self createItemsFromFields: (screen inputFields)].

self playInputFieldrefreshedMusic.

^aSortedCollect.

Figure 255. Method: createItemsFromInputFields

Figure 256 on page 222 shows the createItemsFromOutputFields method.

Appendix A. Screen Field Monitor Tool 221

createItemsFromOutputFields

| aSortedCollect |

(self subpartNamed: #txtProcessingMessage)
labelString: ′ Grabbing Output Fields′ .

screen outputFields = nil ifFalse:
[aSortedCollect := self createItemsFromFields: (screen outputFields)].

self playOutputFieldrefreshedMusic.
(self subpartNamed: #txtProcessingMessage)

labelString: ′ Fields refreshed !!′ .

^aSortedCollect.

Figure 256. Method: createItemsFromOutputFields

Figure 257 shows the initializeRefresh method.

initializeRefresh

″initialize instance variable: screen″
screen := self partAttributeValue: #(#ScreenPartVar #self).

″initialize input and output fields″
screen inputFields: nil.
screen outputFields: nil.

″initialize list boxes″
self partAttributeValue: #(#lbInputFields #items) put: nil.
self partAttributeValue: #(#lbOutputFields #items) put: nil.

Figure 257. Method: initializeRefresh

Figure 258 shows the listActiveSessions method.

listActiveSessions

| sessions aDict |

sessions := Abt3270Terminal allSessions select: [:e |
((e at: #qsstSestype) = $D) | ((e at: #qsstSestype) = $F)].

aDict := Dictionary new.

Figure 258 (Part 1 of 2). Method: listActiveSessions

222 Building GUIs

sessions do: [:each | aDict at: (each at: #qsstShortname)
put: ((each at: #qsstShortname) asCharacter)].

aDict size = 0 ifTrue:
[SessionExists := 0.
CwMessagePrompter message: ′ No Session active. Start session first.′ .
″ exit Application here !!!!!! ″

]
ifFalse: [SessionExists := 1].

^aDict asSortedCollection.

Figure 258 (Part 2 of 2). Method: listActiveSessions

Figure 259 shows the playInputFieldrefreshedMusic method.

playInputFieldrefreshedMusic

(self partAttributeValue: #(#tbSoundOn #selection)) ifTrue:
[

(PlatformFunctions at: ′ DosBeep′)
coroutineCallWith: 270 with: 100;
coroutineCallWith: 440 with: 100;
coroutineCallWith: 660 with: 100.

].

Figure 259. Method: playInputFieldrefreshedMusic

Figure 260 shows the playOutputFieldrefreshedMusic method.

playOutputFieldrefreshedMusic

(self partAttributeValue: #(#tbSoundOn #selection)) ifTrue:
[

(PlatformFunctions at: ′ DosBeep′)
coroutineCallWith: 100 with: 500.

].

Figure 260. Method: playOutputFieldrefreshedMusic

Figure 261 shows the playRefreshFieldsMusic method.

playRefreshFieldsMusic

(self partAttributeValue: #(#tbSoundOn #selection)) ifTrue:
[

(PlatformFunctions at: ′ DosBeep′)
coroutineCallWith: 880 with: 250.

].

Figure 261. Method: playRefreshFieldsMusic

Figure 262 on page 224 shows the refreshFields method.

Appendix A. Screen Field Monitor Tool 223

refreshFields

self playRefreshFieldsMusic.
(self subpartNamed: #txtProcessingMessage)

labelString: ′ Getting Data from Screen′ ;
show.

screen getFieldData.

Figure 262. Method: refreshFields

Figure 263 shows the screen method.

screen

″Return the value of screen.″

^screen

Figure 263. Method: screen

Figure 264 shows the screen: method

screen: anObject

″Save the value of screen.″

screen := anObject.
self signalEvent: #screen

with: anObject.

Figure 264. Method: screen:

Figure 265 shows the screenKeyString method.

screenKeyString

″Return the value of screen KeyString.″

^screen keyString.

Figure 265. Method: screenKeyString

Figure 266 shows the screenSessionId method.

screenSessionId

″Return the value of screen SessionId.″

^screen shortSessionID.

Figure 266. Method: screenSessionId

224 Building GUIs

Appendix B. Changing Host Sessions Dynamically without Using
Scripts

In our simple Abt3270Screen part example, described in 3.3.1, “Abt3270Screen
Part Only” on page 21, we assumed that the host session was always fixed (G).
You may want to allow the users of a VisualAge EHLLAPI application
implemented using the Abt3270Screen part to switch host sessions dynamically
at run time.

Note: Although the approach described in this appendix allows users to switch
host sessions dynamically at run time, the session used during
development—G in our case—must be available at run time.

This appendix explains how we used the visual part created in the example and
expanded it to provide for the dynamic switching of host sessions. We used the
action bar of the first GUI window to provide a session selection menu. We
performed the following activities:

 1. Tear off the shortSessionId attribute for both Abt3270Screen parts as shown
in Figure 267.

Figure 267. Tearing Off shortSessionId

 2. Implement the action bar with the session ID options. The VisualAge User′s
Guide and Reference provides detailed instructions on how to implement an
action bar menu in Adding Menu Parts. Figure 268 on page 226 shows the
menus with the session ID options.

 Copyright IBM Corp. 1994 225

Figure 268. Adding a Menu with Session Id Options

 3. Add a variable part to the free form surface to pass the session ID to the
Abt3270Screen part. Connect each session to the variable as follows:

• Push Button1 (#clicked) to Object (#self)

• Push Button2 (#clicked) to Object (#self)

•

The connections are incomplete (dashed), and you must supply a parameter
value.

 4. Select a connection, double-click on it, and select Set parameters.
Figure 269 on page 227 shows the parameter setting for session A. Repeat
this step for each session ID (B, C, D..., G).

226 Building GUIs

Figure 269. Setting Parameters for a Connection

 5. Finally, connect the variable to the torn-off shortSessionID attributes of the
Abt3270Screen parts as follows:

• #Object (#self) to #shortSessionID of 3270 Screen (#self)

• #Object (#self) to #shortSessionID of 3270 Screen1 (#self)

Figure 270 shows all connections.

Figure 270. All Connections Required to Switch Host Sessions

Appendix B. Changing Host Sessions Dynamically without Using Scripts 227

Figure 271 shows the session ID options menu at run time.

Figure 271. Session Id Options Menu

228 Building GUIs

Appendix C. Jumping to the 3270 Screen

Suppose you have to build a GUI interface for a specific application, but, at the
same time, users of that GUI interface want to be able to use existing, text-based
host applications from the same PWS.

For example, PWS users have access to text-based host applications through a
3270 emulation. For a specific host application a GUI interface is available. If
that specific application is started, the GUI application should be in control
automatically.

To implement this example with VisualAge′s EHLLAPI support you must write an
application with host control, that is, using the Abt3270Screen part. You must
also write some VisualAge scripts.

This appendix explains how we implemented the function described above using
the application described in Chapter 3, “Applying the VisualAge EHLLAPI Parts
with a Simple Example” on page 17.

Figure 272 shows the completed application with all visual connections in the
Composition Editor window. The sections that follow explain the relevant steps
to implement this application.

Figure 272. Completed Application

Note: We added comments (in italic style) to the free form surface to document
the visual connections. This is a nice and easy way to document
VisualAge applications but has the following drawbacks:

• Generates extra Smalltalk code, which could affect performance

• The comment positions are lost when you file-out/file-in your
application.

 Copyright IBM Corp. 1994 229

C.1.1 Adding the Parts to the Free Form Surface
Perform the following steps to add the required parts to the free form surface:

 1. Create the window and the menus and add an Abt3270Screen part to the free
form surface.

 2. Tear off the terminal and the shortSessionID attributes from the
Abt3270Screen part.

 3. Set the session ID for the Abt3270Screen part. It does not matter which
session you choose; just be sure that the session is available and active on
your PWS and on the PWSs of all users.

You do not need to specify a key string because a script is used to verify the
correct host screen.

The Screen Settle Time must be specified to avoid multiple screenChanged
events when a host screen is modified.

Figure 273 shows the settings for the Abt3270Screen part.

Figure 273. Abt3270Screen Part Settings

C.1.2 Creating the jumpSession: Method
The jumpSession: method is executed when the user selects a session from
Menu1. You should use the Script Editor to create that method. Figure 274 on
page 231 shows the jumpSession: method.

230 Building GUIs

Figure 274. jumpSession: Method

C.1.3 Creating the Event-to-Script Connection
Create an event-to-script connection for each push button on Menu1 as follows:

• #PbSessionA (#clicked) to method (#jumpSession:).
The event-to-script connection is incomplete at this point, and you must
provide a session ID as a parameter. You will do this in the next step.

Repeat this step for all push buttons on Menu1. Figure 275 shows the settings
for one event-to-script connection.

Figure 275. Event-to-Script Connection for the jumpSession: Method

C.1.4 Assigning Session IDs
To create the parameter (session ID) for the jumpSession: method follow these
steps:

 1. Drop a Label part for each session ID onto the free form surface.

 2. Set the labels to the session ID characters using the Settings dialog.

 3. Connect the labels to the incomplete event-to-script connections to provide
the required parameters. The connections are now complete. Figure 276 on
page 232 shows one complete event-to-script connection.

Appendix C. Jumping to the 3270 Screen 231

Figure 276. Providing the Session ID Parameter

 4. You must also pass the session ID to the torn-off shortSessionID attribute of
the Abt3270Screen part. Make the following connections:

• Connect PbSessionA (#clicked) to shortSessionId of 370 Screen (#self)

• Connect A (#labelString) to the above connection (#value).

Repeat this step for all session IDs. Figure 277 shows the connections.

Figure 277. Assigning Session IDs to the Abt3270Screen Part

232 Building GUIs

C.1.5 Identifying the Host Screen
Every time the host screen changes you must check to see whether the map that
triggers the GUI application is shown on the host. You can implement this check
in different ways. We decided to create a method to find the key string on the
host screen because that allowed us to implement our example with just one
Abt3270Screen part and to implement more GUI windows for other host
applications by just adding code to the method.

We implemented the findMapInHost method, which checks each host screen for
a defined key string and raises the foundVa10a event when the key string is
found. Figure 278 shows the findMapInHost method.

Figure 278. findMapInHost Method

C.1.6 Creating the Event-to-Script Connection for the Abt3270Screen Part
Each time the screenChanged event is raised, the findMapInHost method must be
executed. We defined that with an event-to-script connection as follows:

• 3270 Screen (#screenChanged) to method (#findMapInHost).

Figure 279 on page 234 shows the event-to-script connection.

Appendix C. Jumping to the 3270 Screen 233

Figure 279. Event-To-Script Connection for the findMapInHost Method

C.1.7 Adding the foundVa10a Event to the Public Interface
We added the foundVa10a event to the public interface of the visual part
(ItscJumpVa10aView) so that we could use this event to open the first GUI
window of our application with a visual connection. Perform the steps below to
add the foundVa10a event to the public interface:

 1. Switch to the public interface editor.

 2. Select the Event tab.

 3. Type foundVa10a in the Event name field.

 4. Press the Add with defaults push button.

Figure 280 on page 235 shows the results of performing these steps.

234 Building GUIs

Figure 280. Adding the foundVa10a Event to the Public Interface

C.1.8 Adding the GUI Application to the Free Form Surface
We added to the free form surface the already coded GUI application that
handled the host Va10A application. Figure 281 shows the dialog to add the GUI
application to the free form surface.

Figure 281. Adding the GUI Application

C.1.9 Connecting the Parts
We added the following connection to open the first GUI window of our
application whenever the foundVa10a event is raised:

• Connect #itsJumpVa10aView(#foundVa10a) to ApplicationVa10A
(#openOwnedWidget) (see Figure 282 on page 236).

Appendix C. Jumping to the 3270 Screen 235

Figure 282. Connection foundVa10a to openOwnedWidget

C.1.10 Testing the Application
Figure 283 through Figure 285 on page 237 show the application at run time.

The user jumps to session G by selecting Session G from the drop-down menu
(see Figure 283).

Figure 283. User Selects Host Session G

Session G is in control. The user works with the host, and the VisualAge GUI
application is an active OS/2 task looking for application VA10A. Figure 284 on
page 237 shows host session G active, running a host application.

236 Building GUIs

Figure 284. User Uses Host Session G

When application VA10A executes on the host, the VisualAge application takes
control and shows the GUI window (see Figure 285).

Figure 285. GUI Application in Control

Control goes back to the 3270 session when the user selects the End push
button.

Appendix C. Jumping to the 3270 Screen 237

238 Building GUIs

List of Abbreviations

APPC Advanced
Program-to-Program
Communications

CICS Customer Information Control
System

CSP/AD Cross System
Product/Application
Development

CUA Common User Access

DB2 DATABASE 2

DLL dynamic l ink l ibrary

DRDA Distributed Relational
Database Architecture

DUW distributed unit of work

EHLLAPI emulator high-level language
application programming
interface

GUI graphical user interface

host PS host presentation space

IBM International Business
Machines Corporation

IMS Information Management
System

ITSO International Technical
Support Organization

LUW logical unit of work

MVC Model-View-Controller

NPT nonprogrammable terminal

OSF Open System Foundation

OS/2 Operating System/2

PWS programmable workstation

RUW remote unit of work

SAA Systems Application
Architecture

SPOC single point of control

SQL Structured Query Language

TSO Time Sharing Option

 Copyright IBM Corp. 1994 239

240 Building GUIs

Index

A
Abt3270Hllapi 10
Abt3270HllapiError 10
Abt3270Screen 9

build screen records 23, 34
events 10
host screen parsing 213
key string 23, 34
screen settle time 11, 32, 230
short session ID 34, 42, 43, 225, 230

Abt3270Screen events
dataRefreshed 29
fieldDefsRefreshed 11
keySent 11
screenChanged 11, 18, 21, 27, 29, 34, 36, 230

Abt3270Terminal 9
entering host commands 44

Abt3270Terminal events
errorOccurred 13
searchFailed 13, 19, 47
searchSuccessful 13, 19, 33, 37, 38, 47

Abt3270Terminal methods
enter:

andWaitForCursorPositionToChangeFrom: 46,
47, 48, 50, 56, 59, 70

enterCommand: 45
enterCommandLine: 46

actualDate method 196
addCustomer method 182
addOneAndCloseWidget method 209
applySelection method 126

C
cl ient/server

data access component 86
distributed data management 5
distributed function 4
distributed presentation 4
function component 85
Gartner model 3
presentation component 85
remote data management 5
remote presentation 4

copyString: toField: method 185
countInputFieldItems method 220
countOutputFieldItems method 220
createItemsFromFields: method 220
createItemsFromInputFields method 221
createItemsFromOutputFields method 221
Customer Application (Main) window 106, 113
Customer Detail window 111, 112
CustomerList Selection window 107

CustomerList window 108, 109, 110

D
dataRefreshed event 29
deleteCustomer method 180
Distributed Relational Database Architecture

See DRDA
distributed unit of work

See DUW
doLocalSubselect: method 171
DRDA 5

DUW 5
RUW 5

DUW 5

E
EHLLAPI 7

advantages 14
disadvantages 15
host presentation space 10
session parameters 10
VisualAge support 7

enter: andWaitForCursorPositionToChangeFrom:
method 46, 47, 48, 50, 56, 59, 70

enterCommand: method 45
enterCommandLine: method 46
enterID: method 58, 64
EPM editor 112
errorOccurred event 13

F
f ieldDefsRefreshed event 11
Find in CustomerList window 108
findMapInHost: method 233

G
Gartner model 3
GUI design 97
GUI prototype 102

types of 102

H
host application 97

3270 screen sequence 97
3270 screens 97
advantages 101
prototype 102

Host Applications window 105
host screen parsing 213

 Copyright IBM Corp. 1994 241

how to
create a model object 185
create a single instance window 150
create multiple instance windows 151
fill a dictionary with values 145
initialize entry fields with blanks 197
jump to a host session 150
keep a pointer to a model object 173
keep information about previous events 210
provide entry fields in the public interface 154
read all active 3270 sessions 127
read from the terminal presentation space 184
show an error message box 136
synchronize selection in two list boxes 174
use a factory to create multiple instances 163
use class variables in parts 143
write data to the terminal from a script 163
write to a sequential file 192
write to the terminal presentation space 184

I
initializeFields method 197
initializeInfo method 205
initializeRefresh method 222
init ial izeTerminal method 141
init ial izeTransactionDirectory method 145
isItemSelected method 171
isSessionIdChangedWith: method 141
Its3270Applications part 118
Its3270CommunicationSideInfo part 138
Its3270LogonToHostWindow part 121
Its3270SessionSelectionForm part 124
Its3270UserIdPasswordForm part 127
ItsCspSampleCommunicationSideInfo part 143
ItsCspSampleCustomer part 174
ItsCspSampleCustomerListModel part 155
ItsCspSampleCustomerListSelectionWindow part 151
ItsCspSampleCustomerListWindow part 167
ItsCspSampleCustomerNotebookForm part 192
ItsCspSampleCustomerNumberForm part 202
ItsCspSampleCustomerWindow part 186
ItsCspSampleExistingCustomerNotebookForm

part 197
ItsCspSampleLogonWindow part 132
ItsCspSampleMainWindow part 146
ItsCspSampleNewCustomerNotebookForm part 210
ItsCspSampleNewCustomerWindow part 206
ItsDb2SampleLogonWindow part 146
ItsInformationLineForm part 204
ItsOkCancelHelpForm part 129
ItsProcessingWindow part 137
ItsStringMessagebox part 164

J
jumpSession: method 230

K
keySent event 11

L
l istActiveSessions method 222
Logon to CSP Sample Application window 105

M
model-view separation 86, 92, 93, 133, 173
model-view-control ler

See MVC
MVC 86, 94

N
naming convention

for applications 81
for category parts 82
for parts 81

New Customer window 113
nonvisual parts 86

O
object factory part 151, 163, 175, 217
open method 165
openFile method 189
openOwnedWidget action 147
openWidget action 147

P
pbCancel method 132
pbDialPressed method 201
pbHelp method 132
pbOk method 131
pbOkPressed method 153
pbSendPressed method 201
pbWriteLetterPressed method 201
playInputFieldrefreshedMusic method 223
playOutputFieldrefreshedMusic method 223
playRefreshFieldsMusic method 223
pressEnterandWaitforCursorPositionChanged

method 158

R
readActive3270Sessions method 126
readCustomerListAndBuildCollection method 158
readMessage method 39, 41
readName method 40, 41
readNewCustomerWithId: method 178
readTransactionDirectoryAt: method 145
Refresh CustomerList window 109
refreshCustomer method 181
refreshCustomerWith: and: and: method 159

242 Building GUIs

refreshFields method 223
remote unit of work

See RUW
RUW 5

S
sample GUI application

application browser 116
class hierarchy 117
Customer Application (Main) window 106, 113
Customer Detail window 111, 112
CustomerList Selection window 107
CustomerList window 108, 109, 110
design decisions 92
design restrictions 94
Find in CustomerList window 108
first-cut GUI design 100
GUI design 97
Host Applications window 105
Its3270Applications part 118
Its3270CommunicationSideInfo part 138
Its3270LogonToHostWindow part 121
Its3270SessionSelectionForm part 124
Its3270UserIdPasswordForm part 127
ItsCspSampleCommunicationSideInfo part 143
ItsCspSampleCustomer part 174
ItsCspSampleCustomerListModel part 155
ItsCspSampleCustomerListSelectionWindow

part 151
ItsCspSampleCustomerListWindow part 167
ItsCspSampleCustomerNotebookForm part 192
ItsCspSampleCustomerNumberForm part 202
ItsCspSampleCustomerWindow part 186
ItsCspSampleExistingCustomerNotebookForm

part 197
ItsCspSampleLogonWindow part 132
ItsCspSampleMainWindow part 146
ItsCspSampleNewCustomerNotebookForm

part 210
ItsCspSampleNewCustomerWindow part 206
ItsDb2SampleLogonWindow part 146
ItsInformationLineForm part 204
ItsOkCancelHelpForm part 129
ItsProcessingWindow part 137
ItsStringMessagebox part 164
Logon to CSP Sample Application window 105
model-view separation 93
New Customer window 113
nonvisual parts 118
object model 91, 93
objectives 89
prototype 90
Refresh CustomerList window 109
visual parts 117
window sequence 105

screen field monitor 26, 216
countInputFieldItems method 220
countOutputFieldItems method 220

screen field monitor (continued)
createItemsFromFields: method 220
createItemsFromInputFields method 221
createItemsFromOutputFields method 221
initializeRefresh method 222
listActiveSessions method 222
playInputFieldrefreshedMusic method 223
playOutputFieldrefreshedMusic method 223
playRefreshFieldsMusic method 223
refreshFields method 223
screen method 224
screen: method 224
screenKeyString method 224
screenSessionId method 224
window 217

screen method 142, 224
screen scraping 4
screen settle time 11
screen: method 224
screenChanged event 11, 18, 21, 27, 29, 34, 36, 230
screenKeyString method 224
screenSessionId method 224
searchCustomerWithID: method 73
searchFailed 47
searchFailed event 13, 19
searchSuccessful event 13, 19, 33, 37, 38, 47
sessionEstablished method 135
sessionId method 142
sessionId: method 142
showHostWindow method 149
showInfo: text: method 206
single point of control 85
Smalltalk

class variables 143
creating methods 38
dictionary 145
optimizing code 67
transcript window 12

sortListbox method 171
sortListByName method 161
sortListByNumber method 161
SPOC 85, 92, 107
startSelectionWith: and: and: method 161
startTransaction method 162, 183

T
terminal method 142
titel method 183
titel: method 183

U
updateCustomer method 179

V
validateSession method 135

Index 243

visual parts 86
VisualAge

nonvisual parts 86
visual parts 86

VisualAge actions
openOwnedWidget 147
openWidget 147

VisualAge composition editor
adding a part 50

VisualAge EHLLAPI parts
Abt3270Hllapi 10
Abt3270HllapiError 10
Abt3270Screen 9
Abt3270Terminal 9

VisualAge GUI implementation
analyzing the size of 77
design models 83
encapsulating communication services 69
host control 18, 21, 32
workstation control 19, 44

VisualAge parts
object factory 151, 163, 175, 217

VisualAge public interface 143
adding an action to 49
adding an event 234
creating 73

244 Building GUIs

ITSO Technical Bulletin Evaluation RED000

VisualAge: Building GUIs for
Existing Applications

Publication No. GG24-4244-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4244-00 IBML

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 471, Building 070B
5600 COTTLE ROAD
SAN JOSE CA
USA 95193-0001

Fold and Tape Please do not staple Fold and Tape

GG24-4244-00

IBML

Printed in U.S.A.

GG24-4244-00

